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The Magnus-Derek game



Gameplay

• Two-players; Magnus and Derek.

• Played on a circular table with n labeled positions.
• A token starts at some given position and is moved around the
table according to the following rules:

• Magnus chooses a natural number k such that 0 ≤ k ≤ n
2 and tells

Derek,
• Derek then decides whether the token is moved k steps clockwise
or counter-clockwise.

• Magnus’s goal is to maximize the number of positions visited by
the token; Derek’s is to minimize this number.

• Question: How many positions, f∗(n), are visited if both play
optimally?
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n = 2

1∗

2

• Round 1

• Magnus: 1
• Derek: —
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General n

Nedev & Muthukrishnan, 2008:

f∗(n) =
{
n if n is a power of 2
n(1− 1/p) if p is the smallest odd divisor of n

.
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The Magnus-Derek game in
groups



Generalization

• Instead of being arranged in a circle, the positions are now
elements of a finite group G.

• Suppose the token is currently at x ∈ G

• Magnus chooses a group element g and tells Derek,
• Derek then decides whether the token is moved to xg or xg−1.

• Goal is to find f(G), the number of group elements visited
assuming optimal play.

• Gerbner, 2013: If G is a finite abelian group, then

f(G) = f∗(|G|).

• What is f(G) for a general, finite group G?
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Reducing to odd order groups

Proposition. Let G be a finite group and define

Γ = ⟨{g ∈ G : ord(g) = 2k for some k}⟩.

Then Γ◁ G and
f(G) = |Γ|f(G/Γ).

Further, |G/Γ| is odd.

Proof. If token is currently at x, then Magnus can force it to visit all
elements of xΓ:

If g ∈ Γ has order 2k, then Magnus chooses g,g2,g4, . . . ,g2k−1 to
move it to xg.

Then he can make the token visit at least f(G/Γ) cosets by
pretending to play in G/Γ; Derek does the same to make sure it visits
at most f(G/Γ) cosets.
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Palindromes and main result

Definition. We say that a subset P ⊆ G is palindromic if it satisfies

• 1 ∈ P
• a,b ∈ P⇒ aba ∈ P.

Theorem. If G is a group of odd order, then

f(G) = |G| − |P|

where P ⊊ G is a palindromic subset of maximal size.
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A modified game

We define the open Magnus-Derek game as follows:

• Token is moved around a group G using the same rules as
before. However:

• Derek picks a subset N ⊆ G and tells Magnus.
• Magnus wins if the token reaches some element of N.
• Derek wins if he can prevent this from happening.

Define f̃(G) = |G| −maxN |N| where the maximum is taken over all
subsets N for which Derek can win.

20
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Proof of main result

We want to show, that for a group G of odd order, f(G) = |G| − |P|
where P is palindromic in G of maximal size.

• Lemma 1. f̃(G) = f(G)
• Lemma 2. Let N ⊆ G be a set for which Derek can win, of
maximal size. Then

xg, xg−1 ∈ N⇒ x ∈ N. (∗)

• Lemma 3. If G has odd order and N ⊆ G satisfies the property
(∗) from Lemma 2, then there exists an element a ∈ G such that
N = aP where P ⊆ G is palindromic.

• Lemma 4. If G has odd order and P ⊊ G is palindromic of
maximal size, then there exists an element a ∈ G such that
Derek can pick the set aP and win.
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Proof of main result

Lemma 1. f̃(G) = f(G)

Proof. In the original game, Derek can pick a maximal set N for which
he can win the open game without telling Magnus, and play as if
playing the open game. Thus f(G) ≤ f̃(G).

Now consider the original game from Magnus’s point of view.
Suppose, at the current step, that N is the set of elements the token
hasn’t visited. If |N| > |G| − f̃(G), then Magnus can pretend that Derek
has picked the set N, and play as in the open game to make the
token reach some element of N. Eventually, the size of N will shrink
to |G| − f̃(G), which means that the token will have reached f̃(G)
elements. Thus f(G) ≥ f̃(G).
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Proof of main result

Lemma 2. Let N ⊆ G be a set for which Derek can win, of maximal
size. Then

xg, xg−1 ∈ N⇒ x ∈ N. (∗)

Proof. Let N ⊆ G be a maximal set for which Derek can win. Then
Magnus can move the token to every element outside N as follows:

Pick some y ∈ G \ N. Then Derek can’t win for N ∩ {y}, meaning that
Magnus can make the token reach some element of N ∪ {y}. That
element must be y since Derek is preventing the token from reaching
N.

Now suppose x /∈ N. Then Magnus can move the token to x and
choose g, forcing Derek to move it to xg or xg−1, contradicting that
both belong to N.

23
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Proof of main result

Definition. Let a,b, c ∈ G. We say that b is between the elements a
and c if there exist x,g ∈ G such that a = xg−1, b = x and c = xg.

Proposition. Suppose G has odd order and let x, y ∈ G. If 2m− 1 is
the order of y−1x, then B(x, y) := y(y−1x)m is the unique element
between x and y.

We can now state Lemma 2 as follows: Let N ⊆ G be a set for which
Derek can win, of maximal size. Then

x, y ∈ N⇒ B(x, y) ∈ N. (∗)
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Proof of main result

Lemma 3. If G has odd order and N ⊆ G satisfies the property (∗)
from Lemma 2, then there exists an element a ∈ G such that N = aP
where P ⊆ G is palindromic.

Proof. We will use the following statement, without proof:

If a,ax ∈ N, then axk ∈ N for all k. (∗∗)

Now fix some a ∈ N and take x, y ∈ a−1N. We want to show that
xyx ∈ a−1N. Since a,ay ∈ N, by (∗∗) we have

ax(x−1y−1) = ay−1 ∈ N

and since ax,ax(x−1y−1) ∈ N, by (∗∗) again we have

axyx = ax(x−1y−1)−1 ∈ N,

i.e. xyx ∈ a−1N
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Proof of main result

Lemma 4. If G has odd order and P ⊊ G is palindromic of maximal
size, then there exists an element a ∈ G such that Derek can pick the
set aP and win.

Proof. Suppose the token starts at g0 ∈ G. Pick a such that g0 /∈ aP.
We want to show that B(ax,ay) ∈ aP for any x, y ∈ P. Note that
B(ax,ay) = aB(x, y) and

B(x, y) = y(y−1x)m = x y−1x · · · xy−1x︸ ︷︷ ︸
m−1 factors of y−1x

is a palindrome in x, y. Thus B(x, y) ∈ P as desired.

Suppose that the token is currently at g ∈ G \ aP. Then
g = B(gh,gh−1) for any h ∈ G and thus either gh /∈ aP or gh−1 /∈ aP.
Hence Derek can keep the token outside of aP as desired.
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More on palindromes in groups



Goal

We say that a finite group G is nilpotent if for every divisor d of |G|,
there exists a subgroup H of G such that |H| = d.

If G has odd order, we now know that f(G) = |G| − |P| where P is a
proper palindromic subset of G of maximal size. We want to show
that |P| divides |G|.

This will imply, that for a nilpotent group G of odd order,
f(G) = |G|(1− 1/p) where p is the smallest divisor of |G|, since we can
just pick P as a subgroup of index p in G.

27



Goal

We say that a finite group G is nilpotent if for every divisor d of |G|,
there exists a subgroup H of G such that |H| = d.

If G has odd order, we now know that f(G) = |G| − |P| where P is a
proper palindromic subset of G of maximal size. We want to show
that |P| divides |G|.

This will imply, that for a nilpotent group G of odd order,
f(G) = |G|(1− 1/p) where p is the smallest divisor of |G|, since we can
just pick P as a subgroup of index p in G.

27



Goal

We say that a finite group G is nilpotent if for every divisor d of |G|,
there exists a subgroup H of G such that |H| = d.

If G has odd order, we now know that f(G) = |G| − |P| where P is a
proper palindromic subset of G of maximal size. We want to show
that |P| divides |G|.

This will imply, that for a nilpotent group G of odd order,
f(G) = |G|(1− 1/p) where p is the smallest divisor of |G|, since we can
just pick P as a subgroup of index p in G.

27



Reversibility

Definition. Let G = ⟨X⟩ be a group. For a word w written in the
alphabet X, denote by |w| the corresponding group element, and by
w the word obtained by reversing the order of the letters in w. We
sat that G is X-reversible if

|w1| = |w2| ⇐⇒ |w1| = |w2|

for all words w1,w2 in X. If G is reversible, we write g for the unique
element |w| where |w| = g.

Proposition. (Fink & Thom, 2015) H := {|w| ∈ G : |w| = 1} is a normal
subgroup of G.

Proposition. The subgroup H above is trivial if and only if G is
X-reversible.
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Palindromes

Definition. A word w is called an X-palindrome if w = w.

Lemma. Let G = ⟨X⟩ be a group of odd order and suppose G is
X-reversible. Let N = {g ∈ G : g = g−1} and P = {g ∈ G : g = g} (i.e. P
is the set of X-palindromes of G). Then every element of G can be
written uniquely as pn where p ∈ P and n ∈ N.

Corollary. The number of elements of G which can be written as
X-palindromes, divides |G|.

Proof. True if G is X-reversible, since N from the Lemma is a
subgroup.

If G is not X-reversible, consider the group G/H where
H = {|w| ∈ G : |w| = 1}. If G/H is X/H-reversible, then the number of
X/H-palindromes of G/H divides |G|/|H|. For an X/H-palindrome pH,
we then obtain |H| different X-palindromes p|ww| = |w|p|w| of G
(here, |ww| = |w| ∈ H, where |w| = 1). If not, repeat and take the
quotient by H2 = {|w| ∈ G/H : |w| = 1}.
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Conclusion

Recall that f(G) = |G| − |P|, where P is a palindromic subset of G, i.e.
a set satisfying

• 1 ∈ P
• a,b ∈ P⇒ aba ∈ P.

Therefore, P is the set of all P-palindromes of ⟨P⟩, so |P| divides |⟨P⟩|
which divides |G|.

The largest possible size of a palindromic subset of G is thus |G|/p
where p is the smallest divisor. Since subgroups are palindromic,
then if G is nilpotent, f(G) = |G|(1− 1/p).
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