Palindromes in Finite Groups

B.Sc. Project in Mathematics

Dagur Tómas Ásgeirsson February 6, 2019

Advisors: Patrick Devlin, Yale University Rögnvaldur Möller, University of Iceland

- 1. The Magnus-Derek game
- 2. The Magnus-Derek game in groups
- 3. More on palindromes in groups

The Magnus-Derek game

• Two-players; Magnus and Derek.

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
 - Magnus chooses a natural number k such that $0 \le k \le \frac{n}{2}$ and tells Derek,

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
 - Magnus chooses a natural number k such that $0 \le k \le \frac{n}{2}$ and tells Derek,
 - Derek then decides whether the token is moved *k* steps clockwise or counter-clockwise.

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
 - Magnus chooses a natural number k such that $0 \le k \le \frac{n}{2}$ and tells Derek,
 - Derek then decides whether the token is moved *k* steps clockwise or counter-clockwise.
- Magnus's goal is to maximize the number of positions visited by the token; Derek's is to minimize this number.

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
 - Magnus chooses a natural number k such that $0 \le k \le \frac{n}{2}$ and tells Derek,
 - Derek then decides whether the token is moved *k* steps clockwise or counter-clockwise.
- Magnus's goal is to maximize the number of positions visited by the token; Derek's is to minimize this number.
- Question: How many positions, $f^*(n)$, are visited if both play optimally?

• Magnus: 1

- Magnus: 1
- Derek: —

- Magnus: 1
- Derek: —

- Round 1
 - Magnus: 1
 - Derek: —
- Conclusion: $f^*(2) = 2$

• Magnus: 1

- Magnus: 1
- Derek: Clockwise

- Magnus: 1
- Derek: Clockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 1

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 1
 - Derek: Counterclockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 1
 - Derek: Counterclockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 1
 - Derek: Counterclockwise
- Conclusion: $f^*(3) = 2$

• Magnus: 1

- Magnus: 1
- Derek: Clockwise

- Magnus: 1
- Derek: Clockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2

4*

- Magnus: 2
- Derek: —

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2

4*

- Magnus: 2
- Derek: —
- Round 3

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2

- Magnus: 2
- Derek: —
- Round 3
 - Magnus: 1

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2

- Magnus: 2
- Derek: —
- Round 3
 - Magnus: 1
 - Derek: Clockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise
- Round 4

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise
- Round 4
 - Magnus: 2

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise
- Round 4
 - Magnus: 2
 - Derek: —

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise
- Round 4
 - Magnus: 2
 - Derek: —

- Round 1
 - Magnus: 1
 - Derek: Clockwise
- Round 2
 - Magnus: 2
 - Derek: —
- Round 3

- Magnus: 1
- Derek: Clockwise
- Round 4
 - Magnus: 2
 - Derek: —
- Conclusion: $f^*(4) = 4$

Nedev & Muthukrishnan, 2008:

$$f^{*}(n) = \begin{cases} n & \text{if } n \text{ is a power of } 2\\ n(1-1/p) & \text{if } p \text{ is the smallest odd divisor of } n \end{cases}$$

The Magnus-Derek game in groups

• Instead of being arranged in a circle, the positions are now elements of a finite group *G*.

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$
 - Magnus chooses a group element g and tells Derek,

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$
 - Magnus chooses a group element g and tells Derek,
 - Derek then decides whether the token is moved to xg or xg^{-1} .

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$
 - Magnus chooses a group element g and tells Derek,
 - Derek then decides whether the token is moved to xg or xg^{-1} .
- Goal is to find *f*(*G*), the number of group elements visited assuming optimal play.

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$
 - Magnus chooses a group element g and tells Derek,
 - Derek then decides whether the token is moved to xg or xg^{-1} .
- Goal is to find *f*(*G*), the number of group elements visited assuming optimal play.
- Gerbner, 2013: If G is a finite abelian group, then

 $f(G) = f^*(|G|).$

- Instead of being arranged in a circle, the positions are now elements of a finite group *G*.
- Suppose the token is currently at $x \in G$
 - Magnus chooses a group element g and tells Derek,
 - Derek then decides whether the token is moved to xg or xg^{-1} .
- Goal is to find *f*(*G*), the number of group elements visited assuming optimal play.
- Gerbner, 2013: If G is a finite abelian group, then

$$f(G) = f^*(|G|).$$

• What is f(G) for a general, finite group G?

Proposition. Let G be a finite group and define

$$\Gamma = \langle \{g \in G : \operatorname{ord}(g) = 2^k \text{ for some } k \} \rangle.$$

Then $\Gamma \lhd G$ and

$$f(G) = |\Gamma| f(G/\Gamma).$$

Further, $|G/\Gamma|$ is odd.

Proposition. Let G be a finite group and define

$$\Gamma = \langle \{g \in G : \operatorname{ord}(g) = 2^k \text{ for some } k \} \rangle.$$

Then $\Gamma \lhd G$ and

$$f(G) = |\Gamma| f(G/\Gamma).$$

Further, $|G/\Gamma|$ is odd.

Proof. If token is currently at *x*, then Magnus can force it to visit all elements of x**F**:

Proposition. Let G be a finite group and define

$$\Gamma = \langle \{g \in G : \operatorname{ord}(g) = 2^k \text{ for some } k \} \rangle.$$

Then $\Gamma \lhd G$ and

$$f(G) = |\Gamma| f(G/\Gamma).$$

Further, $|G/\Gamma|$ is odd.

Proof. If token is currently at *x*, then Magnus can force it to visit all elements of x**F**:

If $g \in \Gamma$ has order 2^k , then Magnus chooses $g, g^2, g^4, \ldots, g^{2^{k-1}}$ to move it to xg.

Proposition. Let G be a finite group and define

$$\Gamma = \langle \{g \in G : \operatorname{ord}(g) = 2^k \text{ for some } k \} \rangle.$$

Then $\Gamma \lhd G$ and

$$f(G) = |\Gamma| f(G/\Gamma).$$

Further, $|G/\Gamma|$ is odd.

Proof. If token is currently at *x*, then Magnus can force it to visit all elements of xΓ:

If $g \in \Gamma$ has order 2^k , then Magnus chooses $g, g^2, g^4, \ldots, g^{2^{k-1}}$ to move it to xg.

Then he can make the token visit at least $f(G/\Gamma)$ cosets by pretending to play in G/Γ ; Derek does the same to make sure it visits at most $f(G/\Gamma)$ cosets.

Definition. We say that a subset $P \subseteq G$ is *palindromic* if it satisfies

- $1 \in P$
- $\cdot a, b \in P \Rightarrow aba \in P.$

Definition. We say that a subset $P \subseteq G$ is *palindromic* if it satisfies

- $1 \in P$
- $a, b \in P \Rightarrow aba \in P$.

Theorem. If G is a group of odd order, then

f(G) = |G| - |P|

where $P \subsetneq G$ is a palindromic subset of maximal size.

• Token is moved around a group *G* using the same rules as before. However:

- Token is moved around a group *G* using the same rules as before. However:
 - Derek picks a subset $N \subseteq G$ and tells Magnus.
 - Magnus wins if the token reaches some element of *N*.
 - Derek wins if he can prevent this from happening.

- Token is moved around a group *G* using the same rules as before. However:
 - Derek picks a subset $N \subseteq G$ and tells Magnus.
 - Magnus wins if the token reaches some element of *N*.
 - Derek wins if he can prevent this from happening.

Define $\tilde{f}(G) = |G| - \max_N |N|$ where the maximum is taken over all subsets N for which Derek can win.

We want to show, that for a group G of odd order, f(G) = |G| - |P|where P is palindromic in G of maximal size.

We want to show, that for a group G of odd order, f(G) = |G| - |P|where P is palindromic in G of maximal size.

• Lemma 1. $\tilde{f}(G) = f(G)$

We want to show, that for a group G of odd order, f(G) = |G| - |P|where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G) = f(G)$
- Lemma 2. Let N ⊆ G be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

We want to show, that for a group G of odd order, f(G) = |G| - |P|where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G) = f(G)$
- Lemma 2. Let N ⊆ G be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

• Lemma 3. If *G* has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that N = aP where $P \subseteq G$ is palindromic.

We want to show, that for a group G of odd order, f(G) = |G| - |P|where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G) = f(G)$
- Lemma 2. Let N ⊆ G be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

- Lemma 3. If *G* has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that N = aP where $P \subseteq G$ is palindromic.
- Lemma 4. If G has odd order and P ⊊ G is palindromic of maximal size, then there exists an element a ∈ G such that Derek can pick the set aP and win.

Lemma 1. $\tilde{f}(G) = f(G)$

Proof. In the original game, Derek can pick a maximal set *N* for which he can win the open game without telling Magnus, and play as if playing the open game. Thus $f(G) \leq \tilde{f}(G)$.

Lemma 1. $\tilde{f}(G) = f(G)$

Proof. In the original game, Derek can pick a maximal set *N* for which he can win the open game without telling Magnus, and play as if playing the open game. Thus $f(G) \leq \tilde{f}(G)$.

Now consider the original game from Magnus's point of view. Suppose, at the current step, that *N* is the set of elements the token hasn't visited. If $|N| > |G| - \tilde{f}(G)$, then Magnus can pretend that Derek has picked the set *N*, and play as in the open game to make the token reach some element of *N*. Eventually, the size of *N* will shrink to $|G| - \tilde{f}(G)$, which means that the token will have reached $\tilde{f}(G)$ elements. Thus $f(G) \ge \tilde{f}(G)$. **Lemma 2**. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Pick some $y \in G \setminus N$. Then Derek can't win for $N \cap \{y\}$, meaning that Magnus can make the token reach some element of $N \cup \{y\}$. That element must be y since Derek is preventing the token from reaching N.
Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$xg, xg^{-1} \in N \Rightarrow x \in N.$$
 (*)

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Pick some $y \in G \setminus N$. Then Derek can't win for $N \cap \{y\}$, meaning that Magnus can make the token reach some element of $N \cup \{y\}$. That element must be y since Derek is preventing the token from reaching N.

Now suppose $x \notin N$. Then Magnus can move the token to x and choose g, forcing Derek to move it to xg or xg^{-1} , contradicting that both belong to N.

Definition. Let $a, b, c \in G$. We say that b is *between* the elements a and c if there exist $x, g \in G$ such that $a = xg^{-1}$, b = x and c = xg.

Definition. Let $a, b, c \in G$. We say that b is *between* the elements a and c if there exist $x, g \in G$ such that $a = xg^{-1}$, b = x and c = xg.

Proposition. Suppose *G* has odd order and let $x, y \in G$. If 2m - 1 is the order of $y^{-1}x$, then $B(x, y) := y(y^{-1}x)^m$ is the unique element between *x* and *y*.

Definition. Let $a, b, c \in G$. We say that b is *between* the elements a and c if there exist $x, g \in G$ such that $a = xg^{-1}$, b = x and c = xg.

Proposition. Suppose *G* has odd order and let $x, y \in G$. If 2m - 1 is the order of $y^{-1}x$, then $B(x, y) := y(y^{-1}x)^m$ is the unique element between *x* and *y*.

We can now state Lemma 2 as follows: Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

 $x, y \in N \Rightarrow B(x, y) \in N.$ (*)

Proof of main result

Lemma 3. If *G* has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that N = aP where $P \subseteq G$ is palindromic.

Proof. We will use the following statement, without proof:

If $a, ax \in N$, then $ax^k \in N$ for all k. (**)

Proof of main result

Lemma 3. If *G* has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that N = aP where $P \subseteq G$ is palindromic.

Proof. We will use the following statement, without proof:

If
$$a, ax \in N$$
, then $ax^k \in N$ for all k . (**)

Now fix some $a \in N$ and take $x, y \in a^{-1}N$. We want to show that $xyx \in a^{-1}N$. Since $a, ay \in N$, by (**) we have

$$ax(x^{-1}y^{-1}) = ay^{-1} \in N$$

and since $ax, ax(x^{-1}y^{-1}) \in N$, by (**) again we have

$$axyx = ax(x^{-1}y^{-1})^{-1} \in N,$$

i.e. $xyx \in a^{-1}N$

Lemma 4. If *G* has odd order and $P \subsetneq G$ is palindromic of maximal size, then there exists an element $a \in G$ such that Derek can pick the set *aP* and win.

Proof. Suppose the token starts at $g_0 \in G$. Pick *a* such that $g_0 \notin aP$. We want to show that $B(ax, ay) \in aP$ for any $x, y \in P$. Note that B(ax, ay) = aB(x, y) and

$$B(x, y) = y(y^{-1}x)^{m} = x \underbrace{y^{-1}x \cdots xy^{-1}x}_{m-1 \text{ factors of } y^{-1}}$$

is a palindrome in x, y. Thus $B(x, y) \in P$ as desired.

Lemma 4. If *G* has odd order and $P \subsetneq G$ is palindromic of maximal size, then there exists an element $a \in G$ such that Derek can pick the set *aP* and win.

Proof. Suppose the token starts at $g_0 \in G$. Pick *a* such that $g_0 \notin aP$. We want to show that $B(ax, ay) \in aP$ for any $x, y \in P$. Note that B(ax, ay) = aB(x, y) and

$$B(x,y) = y(y^{-1}x)^m = x \underbrace{y^{-1}x \cdots xy^{-1}x}_{m-1 \text{ factors of } y^{-1}}$$

is a palindrome in x, y. Thus $B(x, y) \in P$ as desired.

Suppose that the token is currently at $g \in G \setminus aP$. Then $g = B(gh, gh^{-1})$ for any $h \in G$ and thus either $gh \notin aP$ or $gh^{-1} \notin aP$. Hence Derek can keep the token outside of aP as desired.

More on palindromes in groups

We say that a finite group G is *nilpotent* if for every divisor d of |G|, there exists a subgroup H of G such that |H| = d.

We say that a finite group G is *nilpotent* if for every divisor d of |G|, there exists a subgroup H of G such that |H| = d.

If G has odd order, we now know that f(G) = |G| - |P| where P is a proper palindromic subset of G of maximal size. We want to show that |P| divides |G|.

We say that a finite group G is *nilpotent* if for every divisor d of |G|, there exists a subgroup H of G such that |H| = d.

If G has odd order, we now know that f(G) = |G| - |P| where P is a proper palindromic subset of G of maximal size. We want to show that |P| divides |G|.

This will imply, that for a nilpotent group G of odd order, f(G) = |G|(1 - 1/p) where p is the smallest divisor of |G|, since we can just pick P as a subgroup of index p in G. **Definition.** Let $G = \langle X \rangle$ be a group. For a word *w* written in the alphabet *X*, denote by |w| the corresponding group element, and by \overline{w} the word obtained by reversing the order of the letters in *w*. We sat that *G* is *X*-reversible if

$$|\overline{w_1}| = |\overline{w_2}| \iff |w_1| = |w_2|$$

for all words w_1, w_2 in X. If G is reversible, we write \overline{g} for the unique element $|\overline{w}|$ where |w| = g.

Definition. Let $G = \langle X \rangle$ be a group. For a word *w* written in the alphabet *X*, denote by |w| the corresponding group element, and by \overline{w} the word obtained by reversing the order of the letters in *w*. We sat that *G* is *X*-reversible if

$$|\overline{w_1}| = |\overline{w_2}| \iff |w_1| = |w_2|$$

for all words w_1, w_2 in X. If G is reversible, we write \overline{g} for the unique element $|\overline{w}|$ where |w| = g.

Proposition. (Fink & Thom, 2015) $H := \{ |\overline{w}| \in G : |w| = 1 \}$ is a normal subgroup of *G*.

Definition. Let $G = \langle X \rangle$ be a group. For a word *w* written in the alphabet *X*, denote by |w| the corresponding group element, and by \overline{w} the word obtained by reversing the order of the letters in *w*. We sat that *G* is *X*-reversible if

$$|\overline{w_1}| = |\overline{w_2}| \iff |w_1| = |w_2|$$

for all words w_1, w_2 in X. If G is reversible, we write \overline{g} for the unique element $|\overline{w}|$ where |w| = g.

Proposition. (Fink & Thom, 2015) $H := \{|\overline{w}| \in G : |w| = 1\}$ is a normal subgroup of *G*.

Proposition. The subgroup *H* above is trivial if and only if *G* is *X*-reversible.

Definition. A word w is called an X-palindrome if $w = \overline{w}$.

Definition. A word w is called an X-palindrome if $w = \overline{w}$.

Lemma. Let $G = \langle X \rangle$ be a group of odd order and suppose *G* is X-reversible. Let $N = \{g \in G : \overline{g} = g^{-1}\}$ and $P = \{g \in G : \overline{g} = g\}$ (i.e. *P* is the set of X-palindromes of *G*). Then every element of *G* can be written uniquely as *pn* where $p \in P$ and $n \in N$.

Definition. A word w is called an X-palindrome if $w = \overline{w}$.

Lemma. Let $G = \langle X \rangle$ be a group of odd order and suppose *G* is X-reversible. Let $N = \{g \in G : \overline{g} = g^{-1}\}$ and $P = \{g \in G : \overline{g} = g\}$ (i.e. *P* is the set of X-palindromes of *G*). Then every element of *G* can be written uniquely as *pn* where $p \in P$ and $n \in N$.

Corollary. The number of elements of *G* which can be written as *X*-palindromes, divides |*G*|.

Definition. A word w is called an X-palindrome if $w = \overline{w}$.

Lemma. Let $G = \langle X \rangle$ be a group of odd order and suppose *G* is X-reversible. Let $N = \{g \in G : \overline{g} = g^{-1}\}$ and $P = \{g \in G : \overline{g} = g\}$ (i.e. *P* is the set of X-palindromes of *G*). Then every element of *G* can be written uniquely as *pn* where $p \in P$ and $n \in N$.

Corollary. The number of elements of *G* which can be written as *X*-palindromes, divides |*G*|.

Proof. True if *G* is *X*-reversible, since *N* from the Lemma is a subgroup.

Definition. A word w is called an X-palindrome if $w = \overline{w}$.

Lemma. Let $G = \langle X \rangle$ be a group of odd order and suppose *G* is X-reversible. Let $N = \{g \in G : \overline{g} = g^{-1}\}$ and $P = \{g \in G : \overline{g} = g\}$ (i.e. *P* is the set of X-palindromes of *G*). Then every element of *G* can be written uniquely as *pn* where $p \in P$ and $n \in N$.

Corollary. The number of elements of *G* which can be written as *X*-palindromes, divides |*G*|.

Proof. True if *G* is *X*-reversible, since *N* from the Lemma is a subgroup.

If *G* is not *X*-reversible, consider the group *G*/*H* where $H = \{|\overline{w}| \in G : |w| = 1\}$. If *G*/*H* is *X*/*H*-reversible, then the number of *X*/*H*-palindromes of *G*/*H* divides |G|/|H|. For an *X*/*H*-palindrome *pH*, we then obtain |H| different *X*-palindromes $p|w\overline{w}| = |w|p|\overline{w}|$ of *G* (here, $|w\overline{w}| = |\overline{w}| \in H$, where |w| = 1). If not, repeat and take the quotient by $H_2 = \{|\overline{w}| \in G/H : |w| = 1\}$. Recall that f(G) = |G| - |P|, where P is a palindromic subset of G, i.e. a set satisfying

- $1 \in P$
- $a, b \in P \Rightarrow aba \in P$.

Therefore, *P* is the set of all *P*-palindromes of $\langle P \rangle$, so |P| divides $|\langle P \rangle|$ which divides |G|.

Recall that f(G) = |G| - |P|, where P is a palindromic subset of G, i.e. a set satisfying

- $1 \in P$
- $a, b \in P \Rightarrow aba \in P$.

Therefore, *P* is the set of all *P*-palindromes of $\langle P \rangle$, so |P| divides $|\langle P \rangle|$ which divides |G|.

The largest possible size of a palindromic subset of *G* is thus |G|/p where *p* is the smallest divisor. Since subgroups are palindromic, then if *G* is nilpotent, f(G) = |G|(1 - 1/p).