Palindromes in Finite Groups

B.Sc. Project in Mathematics

Dagur Tómas Ásgeirsson
February 6, 2019
Advisors:
Patrick Devlin, Yale University
Rögnvaldur Möller, University of Iceland

Table of contents

1. The Magnus-Derek game
2. The Magnus-Derek game in groups
3. More on palindromes in groups

The Magnus-Derek game

Gameplay

- Two-players; Magnus and Derek.

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
- Magnus chooses a natural number k such that $0 \leq k \leq \frac{n}{2}$ and tells Derek,

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
- Magnus chooses a natural number k such that $0 \leq k \leq \frac{n}{2}$ and tells Derek,
- Derek then decides whether the token is moved k steps clockwise or counter-clockwise.

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
- Magnus chooses a natural number k such that $0 \leq k \leq \frac{n}{2}$ and tells Derek,
- Derek then decides whether the token is moved k steps clockwise or counter-clockwise.
- Magnus's goal is to maximize the number of positions visited by the token; Derek's is to minimize this number.

Gameplay

- Two-players; Magnus and Derek.
- Played on a circular table with n labeled positions.
- A token starts at some given position and is moved around the table according to the following rules:
- Magnus chooses a natural number k such that $0 \leq k \leq \frac{n}{2}$ and tells Derek,
- Derek then decides whether the token is moved k steps clockwise or counter-clockwise.
- Magnus's goal is to maximize the number of positions visited by the token; Derek's is to minimize this number.
- Question: How many positions, $f^{*}(n)$, are visited if both play optimally?
$\mathrm{n}=2$
(1)
(2)

$\mathrm{n}=2$

$1 *$

- Round 1

$\mathrm{n}=2$

- Round 1
- Magnus: 1
(2)

$\mathrm{n}=2$

- Round 1
- Magnus: 1
- Derek: -

$\mathrm{n}=2$

(1*)

- Round 1
- Magnus: 1
- Derek: -

$\mathrm{n}=2$

- Round 1
- Magnus: 1
- Derek: -
- Conclusion: $f^{*}(2)=2$
$\mathrm{n}=3$
(1)
(2)
(3)
$\mathrm{n}=3$
(1*)
- Round 1
(2)
(3)

$\mathrm{n}=3$

- Round 1
- Magnus: 1
(2)
(3)

$\mathrm{n}=3$

- Round 1
- Magnus: 1
- Derek: Clockwise

$\mathrm{n}=3$

- Round 1
- Magnus: 1
- Derek: Clockwise
(2)
(3*)

$\mathrm{n}=3$

- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
(2)
(3*)
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 1
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 1
- Derek: Counterclockwise
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 1
- Derek: Counterclockwise
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 1
- Derek: Counterclockwise
- Conclusion: $f^{*}(3)=2$
$n=4$

(1)

(2)
(4)
(3)
$n=4$

(1*)

(2)

(4)

(3)
$n=4$

- Round 1
- Magnus: 1
(3)
- Round 1
- Magnus: 1
- Derek: Clockwise

- Round 1

- Magnus: 1
(2)
- Derek: Clockwise

- Round 1

- Magnus: 1
(2)
- Derek: Clockwise
- Round 2
(3)

- Round 1

- Magnus: 1
(2)

- Derek: Clockwise
- Round 2
- Magnus: 2
(3)

- Round 1

- Magnus: 1
(2)
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
(3)
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 1
- Magnus: 1
- Derek: Clockwise

- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Round 1
- Magnus: 1
- Derek: Clockwise

- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
(3)
- Round 1
- Magnus: 1
- Derek: Clockwise

- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 4
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 4
- Magnus: 2
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 4
- Magnus: 2
- Derek: -
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 4
- Magnus: 2
- Derek: -
- Round 1
- Magnus: 1
- Derek: Clockwise
- Round 2
- Magnus: 2
- Derek: -
- Round 3
- Magnus: 1
- Derek: Clockwise
- Round 4
- Magnus: 2
- Derek: -
- Conclusion: $f^{*}(4)=4$

General n

Nedev \& Muthukrishnan, 2008:

$$
f^{*}(n)=\left\{\begin{array}{ll}
n & \text { if } n \text { is a power of } 2 \\
n(1-1 / p) & \text { if } p \text { is the smallest odd divisor of } n
\end{array} .\right.
$$

The Magnus-Derek game in groups

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$
- Magnus chooses a group element g and tells Derek,

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$
- Magnus chooses a group element g and tells Derek,
- Derek then decides whether the token is moved to xg or xg^{-1}.

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$
- Magnus chooses a group element g and tells Derek,
- Derek then decides whether the token is moved to xg or xg^{-1}.
- Goal is to find $f(G)$, the number of group elements visited assuming optimal play.

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$
- Magnus chooses a group element g and tells Derek,
- Derek then decides whether the token is moved to xg or xg^{-1}.
- Goal is to find $f(G)$, the number of group elements visited assuming optimal play.
- Gerbner, 2013: If G is a finite abelian group, then

$$
f(G)=f^{*}(|G|) .
$$

Generalization

- Instead of being arranged in a circle, the positions are now elements of a finite group G.
- Suppose the token is currently at $x \in G$
- Magnus chooses a group element g and tells Derek,
- Derek then decides whether the token is moved to xg or xg^{-1}.
- Goal is to find $f(G)$, the number of group elements visited assuming optimal play.
- Gerbner, 2013: If G is a finite abelian group, then

$$
f(G)=f^{*}(|G|) .
$$

- What is $f(G)$ for a general, finite group G ?

Reducing to odd order groups

Proposition. Let G be a finite group and define

$$
\Gamma=\left\langle\left\{g \in G: \operatorname{ord}(g)=2^{k} \text { for some } k\right\}\right\rangle .
$$

Then $\Gamma \triangleleft G$ and

$$
f(G)=|\Gamma| f(G / \Gamma) .
$$

Further, $|G / \Gamma|$ is odd.

Reducing to odd order groups

Proposition. Let G be a finite group and define

$$
\Gamma=\left\langle\left\{g \in G: \operatorname{ord}(g)=2^{k} \text { for some } k\right\}\right\rangle .
$$

Then $\Gamma \triangleleft G$ and

$$
f(G)=|\Gamma| f(G / \Gamma) .
$$

Further, $|G / \Gamma|$ is odd.
Proof. If token is currently at x, then Magnus can force it to visit all elements of $x \Gamma$:

Reducing to odd order groups

Proposition. Let G be a finite group and define

$$
\Gamma=\left\langle\left\{g \in G: \operatorname{ord}(g)=2^{k} \text { for some } k\right\}\right\rangle .
$$

Then $\Gamma \triangleleft G$ and

$$
f(G)=|\Gamma| f(G / \Gamma) .
$$

Further, $|G / \Gamma|$ is odd.
Proof. If token is currently at x, then Magnus can force it to visit all elements of $x \Gamma$:
If $g \in \Gamma$ has order 2^{k}, then Magnus chooses $g, g^{2}, g^{4}, \ldots, g^{2^{k-1}}$ to move it to $x g$.

Reducing to odd order groups

Proposition. Let G be a finite group and define

$$
\Gamma=\left\langle\left\{g \in G: \operatorname{ord}(g)=2^{k} \text { for some } k\right\}\right\rangle .
$$

Then $\Gamma \triangleleft G$ and

$$
f(G)=|\Gamma| f(G / \Gamma) .
$$

Further, $|G / \Gamma|$ is odd.
Proof. If token is currently at x, then Magnus can force it to visit all elements of $x \Gamma$:
If $g \in \Gamma$ has order 2^{k}, then Magnus chooses $g, g^{2}, g^{4}, \ldots, g^{2^{k-1}}$ to move it to xg .

Then he can make the token visit at least $f(G / \Gamma)$ cosets by pretending to play in G / Γ; Derek does the same to make sure it visits at most $f(G / \Gamma)$ cosets.

Palindromes and main result

Definition. We say that a subset $P \subseteq G$ is palindromic if it satisfies

- $1 \in P$
- $a, b \in P \Rightarrow a b a \in P$.

Palindromes and main result

Definition. We say that a subset $P \subseteq G$ is palindromic if it satisfies

- $1 \in P$
- $a, b \in P \Rightarrow a b a \in P$.

Theorem. If G is a group of odd order, then

$$
f(G)=|G|-|P|
$$

where $P \subsetneq G$ is a palindromic subset of maximal size.

A modified game

We define the open Magnus-Derek game as follows:

A modified game

We define the open Magnus-Derek game as follows:

- Token is moved around a group G using the same rules as before. However:

A modified game

We define the open Magnus-Derek game as follows:

- Token is moved around a group G using the same rules as before. However:
- Derek picks a subset $N \subseteq G$ and tells Magnus.
- Magnus wins if the token reaches some element of N.
- Derek wins if he can prevent this from happening.

A modified game

We define the open Magnus-Derek game as follows:

- Token is moved around a group G using the same rules as before. However:
- Derek picks a subset $N \subseteq G$ and tells Magnus.
- Magnus wins if the token reaches some element of N.
- Derek wins if he can prevent this from happening.

Define $\tilde{f}(G)=|G|-\max _{N}|N|$ where the maximum is taken over all subsets N for which Derek can win.

Proof of main result

We want to show, that for a group G of odd order, $f(G)=|G|-|P|$ where P is palindromic in G of maximal size.

Proof of main result

We want to show, that for a group G of odd order, $f(G)=|G|-|P|$ where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G)=f(G)$

Proof of main result

We want to show, that for a group G of odd order, $f(G)=|G|-|P|$ where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G)=f(G)$
- Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

Proof of main result

We want to show, that for a group G of odd order, $f(G)=|G|-|P|$ where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G)=f(G)$
- Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

- Lemma 3. If G has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that $N=a P$ where $P \subseteq G$ is palindromic.

Proof of main result

We want to show, that for a group G of odd order, $f(G)=|G|-|P|$ where P is palindromic in G of maximal size.

- Lemma 1. $\tilde{f}(G)=f(G)$
- Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

- Lemma 3. If G has odd order and $N \subseteq G$ satisfies the property $(*)$ from Lemma 2, then there exists an element $a \in G$ such that $N=a P$ where $P \subseteq G$ is palindromic.
- Lemma 4. If G has odd order and $P \subsetneq G$ is palindromic of maximal size, then there exists an element $a \in G$ such that Derek can pick the set $a P$ and win.

Proof of main result

Lemma 1. $\tilde{f}(G)=f(G)$
Proof. In the original game, Derek can pick a maximal set N for which he can win the open game without telling Magnus, and play as if playing the open game. Thus $f(G) \leq \tilde{f}(G)$.

Proof of main result

Lemma 1. $\tilde{f}(G)=f(G)$
Proof. In the original game, Derek can pick a maximal set N for which he can win the open game without telling Magnus, and play as if playing the open game. Thus $f(G) \leq \tilde{f}(G)$.

Now consider the original game from Magnus's point of view.
Suppose, at the current step, that N is the set of elements the token hasn't visited. If $|N|>|G|-\tilde{f}(G)$, then Magnus can pretend that Derek has picked the set N, and play as in the open game to make the token reach some element of N. Eventually, the size of N will shrink to $|G|-\tilde{f}(G)$, which means that the token will have reached $\tilde{f}(G)$ elements. Thus $f(G) \geq \tilde{f}(G)$.

Proof of main result

Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Proof of main result

Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Pick some $y \in G \backslash N$. Then Derek can't win for $N \cap\{y\}$, meaning that Magnus can make the token reach some element of $N \cup\{y\}$. That element must be y since Derek is preventing the token from reaching N.

Proof of main result

Lemma 2. Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x g, x g^{-1} \in N \Rightarrow x \in N . \quad(*)
$$

Proof. Let $N \subseteq G$ be a maximal set for which Derek can win. Then Magnus can move the token to every element outside N as follows:

Pick some $y \in G \backslash N$. Then Derek can't win for $N \cap\{y\}$, meaning that Magnus can make the token reach some element of $N \cup\{y\}$. That element must be y since Derek is preventing the token from reaching N.

Now suppose $x \notin N$. Then Magnus can move the token to x and choose g, forcing Derek to move it to xg or xg^{-1}, contradicting that both belong to N.

Proof of main result

Definition. Let $a, b, c \in G$. We say that b is between the elements a and c if there exist $x, g \in G$ such that $a=x g^{-1}, b=x$ and $c=x g$.

Proof of main result

Definition. Let $a, b, c \in G$. We say that b is between the elements a and c if there exist $x, g \in G$ such that $a=x g^{-1}, b=x$ and $c=x g$. Proposition. Suppose G has odd order and let $x, y \in G$. If $2 m-1$ is the order of $y^{-1} x$, then $B(x, y):=y\left(y^{-1} x\right)^{m}$ is the unique element between x and y.

Proof of main result

Definition. Let $a, b, c \in G$. We say that b is between the elements a and c if there exist $x, g \in G$ such that $a=x g^{-1}, b=x$ and $c=x g$.

Proposition. Suppose G has odd order and let $x, y \in G$. If $2 m-1$ is the order of $y^{-1} x$, then $B(x, y):=y\left(y^{-1} x\right)^{m}$ is the unique element between x and y.

We can now state Lemma 2 as follows: Let $N \subseteq G$ be a set for which Derek can win, of maximal size. Then

$$
x, y \in N \Rightarrow B(x, y) \in N . \quad(*)
$$

Proof of main result

Lemma 3. If G has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that $N=a P$ where $P \subseteq G$ is palindromic.

Proof. We will use the following statement, without proof:

$$
\text { If } a, a x \in N \text {, then } a x^{k} \in N \text { for all } k . \quad(* *)
$$

Proof of main result

Lemma 3. If G has odd order and $N \subseteq G$ satisfies the property (*) from Lemma 2, then there exists an element $a \in G$ such that $N=a P$ where $P \subseteq G$ is palindromic.

Proof. We will use the following statement, without proof:

$$
\text { If } a, a x \in N \text {, then } a x^{k} \in N \text { for all } k . \quad(* *)
$$

Now fix some $a \in N$ and take $x, y \in a^{-1} N$. We want to show that $x y x \in a^{-1} N$. Since a, $a y \in N$, by $(* *)$ we have

$$
a x\left(x^{-1} y^{-1}\right)=a y^{-1} \in N
$$

and since $a x, a x\left(x^{-1} y^{-1}\right) \in N$, by $(* *)$ again we have

$$
a x y x=a x\left(x^{-1} y^{-1}\right)^{-1} \in N
$$

i.e. $x y x \in a^{-1} N$

Proof of main result

Lemma 4. If G has odd order and $P \subsetneq G$ is palindromic of maximal size, then there exists an element $a \in G$ such that Derek can pick the set $a P$ and win.

Proof. Suppose the token starts at $g_{0} \in G$. Pick a such that $g_{0} \notin a P$. We want to show that $B(a x, a y) \in a P$ for any $x, y \in P$. Note that $B(a x, a y)=a B(x, y)$ and

$$
B(x, y)=y\left(y^{-1} x\right)^{m}=x \underbrace{y^{-1} x \cdots x y^{-1} x}_{m-1 \text { factors of } y^{-1} x}
$$

is a palindrome in x, y. Thus $B(x, y) \in P$ as desired.

Proof of main result

Lemma 4. If G has odd order and $P \subsetneq G$ is palindromic of maximal size, then there exists an element $a \in G$ such that Derek can pick the set $a P$ and win.

Proof. Suppose the token starts at $g_{0} \in G$. Pick a such that $g_{0} \notin a P$. We want to show that $B(a x, a y) \in a P$ for any $x, y \in P$. Note that $B(a x, a y)=a B(x, y)$ and

$$
B(x, y)=y\left(y^{-1} x\right)^{m}=x \underbrace{y^{-1} x \cdots x y^{-1} x}_{m-1 \text { factors of } y^{-1} x}
$$

is a palindrome in x, y. Thus $B(x, y) \in P$ as desired.
Suppose that the token is currently at $g \in G \backslash a P$. Then $g=B\left(g h, g h^{-1}\right)$ for any $h \in G$ and thus either $g h \notin a P$ or $g h^{-1} \notin a P$. Hence Derek can keep the token outside of $a P$ as desired.

More on palindromes in groups

Goal

We say that a finite group G is nilpotent if for every divisor d of $|G|$, there exists a subgroup H of G such that $|H|=d$.

Goal

We say that a finite group G is nilpotent if for every divisor d of $|G|$, there exists a subgroup H of G such that $|H|=d$.
If G has odd order, we now know that $f(G)=|G|-|P|$ where P is a proper palindromic subset of G of maximal size. We want to show that $|P|$ divides $|G|$.

Goal

We say that a finite group G is nilpotent if for every divisor d of $|G|$, there exists a subgroup H of G such that $|H|=d$.
If G has odd order, we now know that $f(G)=|G|-|P|$ where P is a proper palindromic subset of G of maximal size. We want to show that $|P|$ divides $|G|$.
This will imply, that for a nilpotent group G of odd order, $f(G)=|G|(1-1 / p)$ where p is the smallest divisor of $|G|$, since we can just pick P as a subgroup of index p in G.

Reversibility

Definition. Let $G=\langle X\rangle$ be a group. For a word w written in the alphabet X, denote by $|w|$ the corresponding group element, and by \bar{w} the word obtained by reversing the order of the letters in w. We sat that G is X-reversible if

$$
\left|\overline{w_{1}}\right|=\left|\overline{w_{2}}\right| \Longleftrightarrow\left|w_{1}\right|=\left|w_{2}\right|
$$

for all words w_{1}, w_{2} in X. If G is reversible, we write \bar{g} for the unique element $|\bar{w}|$ where $|w|=g$.

Reversibility

Definition. Let $G=\langle X\rangle$ be a group. For a word w written in the alphabet X, denote by $|w|$ the corresponding group element, and by \bar{w} the word obtained by reversing the order of the letters in w. We sat that G is X-reversible if

$$
\left|\overline{w_{1}}\right|=\left|\overline{w_{2}}\right| \Longleftrightarrow\left|w_{1}\right|=\left|w_{2}\right|
$$

for all words w_{1}, w_{2} in X. If G is reversible, we write \bar{g} for the unique element $|\bar{w}|$ where $|w|=g$.

Proposition. (Fink \& Thom, 2015) H:=\{|̄| $G:|w|=1\}$ is a normal subgroup of G.

Reversibility

Definition. Let $G=\langle X\rangle$ be a group. For a word w written in the alphabet X, denote by $|w|$ the corresponding group element, and by \bar{w} the word obtained by reversing the order of the letters in w. We sat that G is X-reversible if

$$
\left|\overline{W_{1}}\right|=\left|\overline{W_{2}}\right| \Longleftrightarrow\left|w_{1}\right|=\left|w_{2}\right|
$$

for all words w_{1}, w_{2} in X. If G is reversible, we write \bar{g} for the unique element $|\bar{w}|$ where $|w|=g$.

Proposition. (Fink \& Thom, 2015) H:=\{|̄| $G:|w|=1\}$ is a normal subgroup of G.

Proposition. The subgroup H above is trivial if and only if G is X-reversible.

Palindromes

Definition. A word w is called an X-palindrome if $w=\bar{w}$.

Palindromes

Definition. A word w is called an X-palindrome if $w=\bar{w}$.
Lemma. Let $G=\langle X\rangle$ be a group of odd order and suppose G is X-reversible. Let $N=\left\{g \in G: \bar{g}=g^{-1}\right\}$ and $P=\{g \in G: \bar{g}=g\}$ (i.e. P is the set of X-palindromes of G). Then every element of G can be written uniquely as $p n$ where $p \in P$ and $n \in N$.

Palindromes

Definition. A word w is called an X-palindrome if $w=\bar{w}$.
Lemma. Let $G=\langle X\rangle$ be a group of odd order and suppose G is X-reversible. Let $N=\left\{g \in G: \bar{g}=g^{-1}\right\}$ and $P=\{g \in G: \bar{g}=g\}$ (i.e. P is the set of X-palindromes of G). Then every element of G can be written uniquely as $p n$ where $p \in P$ and $n \in N$.

Corollary. The number of elements of G which can be written as X-palindromes, divides $|G|$.

Palindromes

Definition. A word w is called an X-palindrome if $w=\bar{w}$.
Lemma. Let $G=\langle X\rangle$ be a group of odd order and suppose G is X-reversible. Let $N=\left\{g \in G: \bar{g}=g^{-1}\right\}$ and $P=\{g \in G: \bar{g}=g\}$ (i.e. P is the set of X-palindromes of G). Then every element of G can be written uniquely as $p n$ where $p \in P$ and $n \in N$.
Corollary. The number of elements of G which can be written as X-palindromes, divides $|G|$.
Proof. True if G is X-reversible, since N from the Lemma is a subgroup.

Palindromes

Definition. A word w is called an X-palindrome if $w=\bar{w}$.
Lemma. Let $G=\langle X\rangle$ be a group of odd order and suppose G is X-reversible. Let $N=\left\{g \in G: \bar{g}=g^{-1}\right\}$ and $P=\{g \in G: \bar{g}=g\}$ (i.e. P is the set of X-palindromes of G). Then every element of G can be written uniquely as $p n$ where $p \in P$ and $n \in N$.

Corollary. The number of elements of G which can be written as X-palindromes, divides $|G|$.
Proof. True if G is X-reversible, since N from the Lemma is a subgroup.

If G is not X-reversible, consider the group G / H where $H=\{|\bar{W}| \in G:|w|=1\}$. If G / H is X / H-reversible, then the number of X / H-palindromes of G / H divides $|G| /|H|$. For an X / H-palindrome $p H$, we then obtain $|H|$ different X-palindromes $p|w \bar{w}|=|w| p|\bar{w}|$ of G (here, $|w \bar{w}|=|\bar{w}| \in H$, where $|w|=1$). If not, repeat and take the quotient by $H_{2}=\{|\bar{w}| \in G / H:|w|=1\}$.

Conclusion

Recall that $f(G)=|G|-|P|$, where P is a palindromic subset of G, i.e. a set satisfying

- $1 \in P$
- $a, b \in P \Rightarrow a b a \in P$.

Therefore, P is the set of all P-palindromes of $\langle P\rangle$, so $|P|$ divides $|\langle P\rangle|$ which divides $|G|$.

Conclusion

Recall that $f(G)=|G|-|P|$, where P is a palindromic subset of G, i.e. a set satisfying

- $1 \in P$
- $a, b \in P \Rightarrow a b a \in P$.

Therefore, P is the set of all P-palindromes of $\langle P\rangle$, so $|P|$ divides $|\langle P\rangle|$ which divides $|G|$.

The largest possible size of a palindromic subset of G is thus $|G| / p$ where p is the smallest divisor. Since subgroups are palindromic, then if G is nilpotent, $f(G)=|G|(1-1 / p)$.

