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Condensed sets



Sieves

• Let C be a category and X an object of C. A sieve on X is a
subfunctor S of the functor HomC(−, X) : C → Set.

• In other words, S(Y) ⊂ HomC(Y, X), for all f ∈ S(Y) and all
g : Z→ Y, we have f ◦ g ∈ S(Z).

• Let f : Y→ X; the pullback of S along f is the sieve f∗S on Y:

f∗S(Z) = {g : Z→ Y | f ◦ g ∈ S(Z)}

• Let F = {fi : Xi → X}i∈I be a family of morphisms. The sieve S
generated by F is defined by

S(Y) = {f : Y→ X | f factors through some fi ∈ F}.
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The sheaf condition 1

• A presheaf on C is a functor

F : Cop → Set.

For f : U→ V, the morphism F(f) : F(V)→ F(U) is denoted by f∗.

• Let F be a presheaf and S a sieve on X ∈ C. Then F satisfies the
sheaf condition with respect to S if the map

Nat(Hom(−, X),F)→ Nat(S,F)

induced by the inclusion S ↪→ Hom(−, X) is a bijection.

• In other words, if every natural transformation η : S→ F has a
unique extension to a natural transformation Hom(−, X)→ F :

S F

HomC(−, X)

η

∃!
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The sheaf condition 2

Let F be a presheaf and S a sieve on X ∈ C. Suppose S is generated
by a family F = {fi : Xi → X}i∈I and that the appearing fibre products
exist. Then the sheaf condition is equivalent to:

• The diagram

F(X)
∏
i∈I
F(Xi)

∏
(i,j)∈I×I

F(Xi ×X Xj)
e p1

p2

is an equaliser diagram. The maps are defined as follows:

e(x) = (f∗i (x))i∈I for x ∈ F(X);

p1(x)i,j = π∗
ij,1(xi) and p2(x)i,j = π∗

ij,2(xj) for x = (xi)i∈I ∈
∏
i∈I

F(Xi)

where πij,1 : Xi ×X Xj → Xi and πij,2 : Xi ×X Xj → Xj are the
projections.
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Sites – idea

• A site is a category equipped with a collection of covering sieves
or covering families on each object, satisfying certain axioms.

• The most important point is defining a notion of sheaf on the
site.

• These are the presheaves which satisfy the sheaf condition with
respect to every covering sieve of each object.

• Covering sieves can be made to satisfy different axioms, giving
different coverages, but the same sheaves.
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Sites – coverage

Definition. Let C be a category. A coverage τ on C is given by
specifying a set Covτ (X) of covering sieves for each object X,
satisfying

• If S ∈ Covτ (X) and f : Y→ X, then there
is a sieve R ⊂ f∗S such that R ∈ Covτ (Y).
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Sites – Grothendieck topology

Definition. Let C be a category. A Grothendieck topology T on C is
given by specifying a set CovT (X) of covering sieves for each object X,
satisfying

(1) (Identity) For all objects X, Hom(−, X) ∈ CovT (X).

(2) (Base change) If S ∈ CovT (X) and f : Y→ X, then f∗S ∈ CovT (Y).

(3) (Local character) If S ∈ CovT (X) and R is a sieve on X such that

f∗R ∈ CovT (Y)

for all objects Y and all f ∈ S(Y), then f∗R ∈ CovT (Y), then
R ∈ CovT (X).
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Sites – Grothendieck pretopology

Definition. A Grothendieck pretopology P on a category C is given,
for each object X of C, by a set CovP(X) of families {Xi → X}i∈I of
morphisms, satisfying

(1) If Y→ X is an isomorphism then {Y→ X} ∈ CovP(X).

(2) If {Xi → X}i∈I ∈ CovP(U) and {Yij → Xi}j∈Ji ∈ CovP(Xi) for all i ∈ I,
then the family of compositions {Yij → X}i∈I,j∈Ji ∈ CovP(X)

(3) If {Xi → X}i∈I ∈ CovP(X) and Y→ X is a morphism of C then
Xi ×X Y exists for all i and {Xi ×X Y→ Y}i∈I ∈ CovP(Y).
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Sites – precoverage

Let C be a category. A precoverage π on C is given by specifying a set
Covπ(X) of covering families {Xi → X}i∈I of morphisms with target X,
satisfying the following condition

• If {fi : Xi → X}i∈I ∈ Covπ(X) and g : Y→ X is any morphism, then
there exists a {hj : Yj → Y}j∈J ∈ Covπ(Y) such that each g ◦ hj
factors through an fi.
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Generation

Precoverage

Groth. pretopology Coverage

Grothendieck topology

generates

generatesgenerates

is
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Sheaves

• A sheaf on a site C is a presheaf satisfying the sheaf condition
with respect to every covering sieve.

• If the coverage is generated by a precoverage for which the
relevant fibre products exist (for example a Grothendieck
pretopology), then it is enough to check that the covering
families satisfy the second sheaf condition.
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Sites of compact Hausdorff spaces

• A Grothendieck pretopology on the category of compact
Hausdorff spaces (CHaus) is given by the finite, jointly surjective
families.

• This remains a Grothendieck pretopology when restricted to the
subcategory of profinite sets (Prof).

• The subcategory of extremally disconnected sets (ED) is not
closed under fibre products. However, the finite, jointly
surjective families form a precoverage on ED.

• For all of the above sites, the precoverage consisting of the
following two types of families
(1) {fi : Si → S}i∈I such that I is finite and the induced

⨿
i∈I Si → S is

an isomorphism

(2) singleton families {p : S′ → S} where p : S′ → S is surjective.

generates the same Grothendieck topology.
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Condensed sets

• The categories of sheaves on the three sites are equivalent via
restriction:

Sh(CHaus) ' Sh(Prof) ' Sh(ED)

• A sheaf on one of the three sites is called a condensed set.
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A simpler characterisation of condensed sets

Theorem. Let C be one of the sites CHaus or Prof . Then a presheaf T
on C is a sheaf if and only if it satisfies the following two conditions.

(i) For any finite collection (Si)i∈I of objects of C, the natural map

T
(⨿

i∈I

Si

)
→
∏
i∈I

T(Si)

is a bijection.

(ii) For any surjection S′ → S of profinite sets, let p1 and p2 denote
the two projections S′ ×S S′ → S′. Then the map

T(S)→ {x ∈ T(S′) | p∗1 (x) = p∗2 (x) ∈ T(S′ ×S S′)}

is a bijection.
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An even simpler characterisation!

Theorem. A presheaf T on ED is a sheaf if and only if it satisfies the
following condition

(i) For any finite collection (Si)i∈I of objects of ED, the natural map

T
(⨿

i∈I

Si

)
→
∏
i∈I

T(Si)

is a bijection.
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Underlying set, associated condensed set

• Every condensed set T has an underlying set T(∗).

• For any topological space T, the presheaf S 7→ T(S) = C(S, T) is a
sheaf (condensed set).

• These form an adjoint pair when restricted to a certain
subcategory of topological spaces (compactly generated).

• The inclusion of sheaves of a site in its presheaves has a left
adjoint called sheafification.
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Condensed abelian groups



Limits and colimits in condensed abelian groups

• A condensed abelian group is a presheaf of abelian groups on
the site ED, such that finite disjoint unions are sent to the
corresponding finite products (direct sums).

• Limits and colimits exist in CondAb and are computed
objectwise on extremally disconnected sets: for S extremally
disconnected and I→ CondAb i 7→ Mi a functor, we have

(lim−→
i
Mi)(S) = lim−→

i
Mi(S)

(lim←−
i
Mi)(S) = lim←−

i
Mi(S)
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Compact generation and AB axioms

• The category CondAb is generated by compact projectives, more
precisely by the condensed abelian groups of the form Z[S]
where S is extremally disconnected.

• CondAb satisfies all the same of Grothendiecks AB axioms as
abelian groups (all limits and colimits exist, direct sums,
products and filtered colimits are exact etc.)
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Internal hom and tensor product

• We have a symmetric monoidal tensor product in condensed
abelian groups: M⊗ N is the sheafification of

S 7→ M(S)⊗ N(S)

• It represents bilinear maps and has a right adjoint called
internal hom, denoted Hom.

• This means that we have functorial isomorphisms

HomCondAb(N⊗M,P) ' HomCondAb(N,Hom(M,P))

or more concretely, its S-valued points are

Hom(M,N)(S) = HomCondSet(S,Hom(M,N))
= HomCondAb(Z[S],Hom(M,N))
= HomCondAb(Z[S]⊗M,N).
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Derived condensed abelian groups

• We can take the derived category of condensed abelian groups,
D(CondAb) as with any abelian category.

• Objects are complexes of condensed abelian groups,
quasi-isomorphisms (morphisms inducing isomorphisms in
cohomology) between complexes become isomorphisms in the
derived category.

• We have derived hom RHom, derived internal hom RHom, and
derived tensor product ⊗L, satisfying the adjunction

RHom(M⊗L N,P) = RHom(M,RHom(N,P))
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Cohomology



Internal cohomology in the topos of condensed sets

• Let S ∈ CHaus. Condensed cohomology of S: higher derived
functors of

Γ(S,−) : CondAb→ Ab,

denoted Hicond(S,M) for M ∈ CondAb.

• We have
Γ(S,−) = HomCondAb(Z[S],−)

so condensed cohomology can be extended to condensed sets
T; Hicond(T,M) is the cohomology of RHom(Z[T],M).

• For S ∈ CHaus, take a hypercover S• → S of extremally
disconnected sets and compute cohomology of the complex

0→ Γ(S0,M)→ Γ(S1,M)→ Γ(S2,M)→ · · ·
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Sheaf cohomology

• Let F be a sheaf of abelian groups on the compact Hausdorff
space S in the classical sense. There is a classical notion of
cohomology on S with respect to this sheaf:

• Sheaf cohomology. Hisheaf(S,F): take an injective resolution
F → I• and compute the cohomology of the complex

0→ Γ(S, I0)→ Γ(S, I1)→ Γ(S, I2)→ · · ·

(the higher right derived functors of the global sections functor
Γ(S,−)).
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Cohomology coefficients in a discrete group

Theorem. Let S be a compact Hausdorff space and M a discrete
abelian group. There are natural isomorphisms

Hisheaf(S,M) ∼= Hicond(S,M)

where on the left, M is regarded as the sheafification of the constant
presheaf U 7→ M.
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Cohomology coefficients in R

Theorem. Let S be a compact Hausdorff space. Then

Hicond(S,R) =
{
C(S,R) if i = 0
0 if i > 0

.

This is a corollary of

Theorem. Let S be a compact Hausdorff space. For any simplicial
hypercover S• → S by profinite sets Si, the complex of Banach
spaces

0→ C(S,R)→ C(S0,R)→ C(S1,R)→ · · ·

satisfies the following “quantitative” version of exactness: if
f ∈ C(Si,R) satisfies df = 0, then for any ε > 0 there exists a
g ∈ C(Si−1,R) such that dg = f and ‖g‖ ≤ (i+ 2+ ε) ‖f‖.

24



Cohomology coefficients in R

Theorem. Let S be a compact Hausdorff space. Then

Hicond(S,R) =
{
C(S,R) if i = 0
0 if i > 0

.

This is a corollary of

Theorem. Let S be a compact Hausdorff space. For any simplicial
hypercover S• → S by profinite sets Si, the complex of Banach
spaces

0→ C(S,R)→ C(S0,R)→ C(S1,R)→ · · ·

satisfies the following “quantitative” version of exactness: if
f ∈ C(Si,R) satisfies df = 0, then for any ε > 0 there exists a
g ∈ C(Si−1,R) such that dg = f and ‖g‖ ≤ (i+ 2+ ε) ‖f‖.

24



Locally compact abelian groups



Topological vs. condensed

Definition. A topological space X is said to be compactly generated if
continuous maps X→ Y are precisely those making the composite
S→ X→ Y continuous for every compact Hausdorff space S mapping
continuously to X.

Theorem.

(i) The functor X 7→ X from (κ-small) topological spaces to
condensed sets is faithful, and fully faithful when restricted to
the subcategory of compactly generated topological spaces.

(ii) The functor X 7→ X admits a left adjoint T→ T(∗) where the
underlying set T(∗) is equipped with the final topology for the
collection of all maps S→ T(∗) where S is compact Hausdorff,
that come from a map of condensed sets S→ T (here we regard
condensed sets as sheaves on the site CHaus).
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Locally compact abelian groups

Structure theorem for locally compact abelian groups. Let A be a
locally compact abelian group. There exists an integer n and a locally
compact abelian group A′ admitting a compact open subgroup such
that

A ' Rn × A′.

Pontrjagin duality. Let T denote the circle group R/Z. The functor D,
which takes a locally compact abelian group to the abelian group
Hom(A,T) equipped with the compact-open topology, takes values in
LCA and induces a contravariant autoequivalence of LCA. The map
A→ D(D(A)) is an isomorphism. Moreover, D restricts to a duality
from compact abelian groups to discrete abelian groups.
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Compact-open topology and condensed internal hom

Proposition. Let A and B be Hausdorff topological groups with A
compactly generated. Then there is a natural isomorphism of
condensed abelian groups

Hom(A,B) ' Hom(A,B)

where Hom(A,B) is equipped with the compact-open topology.

In particular, this holds for locally compact abelian groups A and
B.
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Derived homs between locally compact abelian groups

• There is a notion of bounded derived category of the
quasi-abelian category of locally compact abelian groups. The
notion of RHom in this category can be shown to agree with the
condensed RHom. Thanks to the structure theorem, the
calculation can be reduced to the following theorem.
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The theorem

Theorem. Consider the condensed abelian group associated to a compact
abelian group consisting of a product of circles, A =

∏
I T =

∏
I R/Z where I

is any set. We have the following:

For any discrete condensed abelian group M (i.e. M = M′ where M′ is a
discrete abelian group),

RHom(A,M) =
⊕
I

M[−1]

where the isomorphism ⊕
I

M[−1] → RHom(A,M)

is induced by the maps

M[−1] = RHom(Z[1],M) → RHom(R/Z,M) → RHom(A,M),

where the last map is induced from the projection pi :
∏

R/Z → R/Z to the
i-th factor, i ∈ I.

Further, RHom(A,R) = 0.
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Thanks for listening!
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