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Abstract

In this work, we begin by giving an overview of some topics in group theory,
namely semidirect products, nilpotent groups and wreath products. We use wreath
products to prove Schur’s theorem which says that if the order and index of a
normal subgroup A of a group G are relatively prime, then the A has a complement
in G. Next, we introduce the notion of a civic group: a group with the property
that every subset which is closed under taking palindromes is a subgroup. We prove
that civic groups satisfy the property that its palindromic width is equal to one
and then we reduce the classification of civic groups to the odd order case. More
precisely, we show that every civic group is a direct product of a cyclic 2-group and
a civic group of odd order. Further, we show that a minimal group of odd order
having palindromic width greater than 1 is a semidirect product of two elementary
abelian groups, or a p-group. This is also the form of the minimal non-civic groups
of odd order. Finally, we show that for solving the so-called Magnus-Derek game
[6, 8] on general finite groups, it suffices to consider the odd order case. We give a
solution of the game for civic groups of odd order, as well as other groups having
sufficiently large subgroups. Moreover, we make progress on the solution of the
game in general groups by giving a solution in terms of a maximal subset closed
under taking palindromes. We conjecture that such subsets can in fact always be
chosen to be subgroups, but that question remains open for now.
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Introduction

The main topic of this thesis are groups which we call civic groups :

Definition. We say that a group G is civic if any subset P of G satisfying the
properties

• 1 2 P

• a, b 2 P ) aba 2 P

is a subgroup of G. We say that a subset P satisfying the above properties is
palindromic in G.

The idea of this definition came up when the author, along with his advisor and
collaborator Professor Patrick Devlin of Yale University, was trying to solve the
Magnus-Derek game [6, 8] on general groups. The game is played by two players
called Magnus and Derek. A token starts at some given group element and Magnus
moves it around the group by specifying a group element g while Derek gets to
decide whether to right multiply the current position by g or g

�1. Magnus’s goal
is to maximize the number of elements visited while Derek’s is to minimize this
number. Gerbner [6] solved the game for abelian groups and a few other cases.
In Section 2.2, a partial solution of this game in a general group is given. Civic
groups and palindromes in groups, are treated in Section 2.1.

We found a solution to the Magnus-Derek game for civic groups of odd order, and at
first, we conjectured that all groups of odd order are in fact civic. That conjecture
turned out to be wrong; one of the non-abelian groups of order 27 is a small
counterexample. However, the study of civic groups of odd order is of interest,
because a classification of them would imply a classification of all civic groups, see
Theorem 2.1.12. Some work has been done on palindromes in groups, see e.g. [5],
where Fink and Thom prove results on palindromes in simple groups. That paper
gave us the idea of reversibility of a group with respect to some generating set
(see Definition 2.1.13 in Section 2.1). We give a solution to the game in terms of
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maximal palindromic sets, and in the cases when those coincide with subgroups,
we have quite a satisfactory solution to the game. This happens, for instance, in
nilpotent groups, which are the topic of Section 1.2, and other groups which have
a subgroup whose index is the smallest prime divisor of the order of the group.
This is substantial progress compared to what was known before.

In Section 2.1 civic groups of both even and odd order are treated in detail. We
prove that the classification of them reduces to the odd order case by showing that
every civic group is the direct product of a cyclic 2-group and an odd order civic
group (Theorem 2.1.12). Then we go on to make progress on the classification of
odd order civic groups by giving the form of minimal, non-civic groups of odd order:
(Z/pZ)ro (Z/qZ), with r 2 N, and p and q distinct primes, or a non-civic p-group.
The study of civic groups is of course related to the study of palindromes in groups.
We show that the set of all palindromes in a group with a fixed generating set,
has size dividing the order of the group, that a group consisting of palindromes
such that every subgroup also consists of palindromes (i.e. has palindromic width
1 with respect to any generating set – see Definition 2.1.2) is civic, and that civic
groups consist of palindromes (in the sense of Definition 2.1.2).

We begin, however, by studying some interesting topics in group theory – namely,
semidirect products, nilpotent groups and wreath products. In chapter 1 we give
the definitions of these, and prove a few results which we wish to use in the
subsequent chapter.
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1. Topics in Group Theory

This chapter will serve as an introduction to some topics in group theory, usually
not covered at the undergraduate level. The choice of topics is motivated by the
content of chapter 2; the aim is to prove as many as possible of the non-trivial
results used there. Most of the contents of this chapter is based on the text of
Abstract Algebra by Dummit and Foote [3]. In Section 1.3, we choose the approach
of Kargapolov and Merzljakov [7] to prove Schur’s theorem, instead of following
Dummit and Foote.

1.1. Semidirect Products

Let G be a group with subgroups H and K such that H is a normal subgroup of
G. Then it is well-known that the set

HK = {hk : h 2 H, k 2 K}

is a subgroup of G. If we add the assumption that H \ K = {1}, we have a
bijection between HK and the cartesian product (H,K) (we use this notation
to avoid confusion with the direct product of groups, which will be introduced
shortly) by mapping hk 7! (h, k). We want to define binary operation on the
set (H,K) which makes it into a group, isomorphic to HK; this we will call the
semidirect product of H and K. Moreover, we will see that we do not need the
restriction that H,K be subgroups of some given group G.

Now, take two elements hk, h0
k
0 of HK. We will use the following as a model when

constructing our operation on H ⇥K:

(hk)(h0
k
0) = hkh

0(k�1
k)k0

= h(kh0
k
�1)kk0

= h
00
k
00
,

3



1. Topics in Group Theory

where h
00 = h(kh0

k
�1) and k

00 = kk
0. It is clear that k

00 2 K; to see that h
00 2 H

recall that H is a normal subgroup of G so kh
0
k
�1 2 H, thus h00 = h(kh0

k
�1) 2 H.

Let H,K be arbitrary groups. We want to mimic the above to construct a group
with underlying set (H,K), which contains a normal subgroup isomorphic to H

and a subgroup isomorphic to K. To define the operation

“(h, k)(h0
, k

0) = (h(kh0
k
�1), kk0)”

on H ⇥ K, we need to define what kh
0
k
�1 means in this context — after all, H

and K are completely arbitrary groups whose elements cannot simply be multiplied
with each other — to do this, we will need the notion of a group action.

Definition 1.1.1. A group action of G on a set A is a map · : G ⇥ A ! A

satisfying the properties (i) and (ii) below. Instead of ·(g, a) we will write g · a.

(i) For all g, g0 2 G and all a 2 A, g · (g0 · a) = (gg0) · a

(ii) For all a 2 A, 1 · a = a

We are particularly interested in the case when A is also a group. Then we have
the following result and definition.

Proposition 1.1.2. Suppose A is a group and ' : G ! Aut(A) is a group
homomorphism. Define a map · : G ⇥ A ! A by g · a = '(g)(a). Then · is
an action of G on A called the left action of G on A determined by '.
In addition, if a, a0 2 A and g 2 G, then

(g · a)(g · a0) = g · (aa0).

Proof. Take g, g
0 2 G and a 2 A. Then

g · (g0 · a) = '(g)('(g0)(a))

= ('(g) � '(g0))(a)
= '(gg0)(a)

= (gg0) · a

where the third equality follows from the fact that ' is a group homomorphism.
Also, since ' is a homomorphism we have that '(1) is the identity element of
Aut(A), i.e. the identity map, Therefore,

1 · a = '(1)(a) = a.

4



1.1. Semidirect Products

For the last part, note that since ' is an automorphism,

(g · a)(g · a0) = '(g)(a)'(g)(a0)

= '(g)(aa0)

= g · (aa0).

Returning briefly to the case where H,K are subgroups of G with H normal in G

and H \K = {1}, we see that since H is normal, for a fixed k 2 K the map

�k : H ! H, h 7! khk
�1

is an automorphism of H. Further, the map

' : K ! Aut(H), k 7! �k

is a group homomorphism. Going back to considering arbitrary groups H and K,
this suggests the definition included in the following theorem.

Theorem 1.1.3. Let H and K be groups and ' : K ! Aut(H) be a homomorphism.
Let · denote the left action of K on H determined by '. Denote by H o' K the
set (H,K) of pairs (h, k) with h 2 H and k 2 K along with the multiplication

(h, k)(h0
, k

0) = (h(k · h0), kk0).

(i) H o' K is a group called the semidirect product of H and K with respect
to '.

(ii) The subgroups

eH = {(h, 1) : h 2 H} and eK = {(1, k) : k 2 K}

are isomorphic to the groups H and K respectively, via the isomorphisms
h 7! h̃ and k 7! k̃, where for h 2 H and k 2 K we define h̃ = (h, 1) and
k̃ = (1, k).

(iii) eH is a normal subgroup of H o' K, and H o' K = eH eK.

Proof. (i) By Proposition 1.1.2, k ·h0 2 H and thus h(k ·h0) 2 H. Also kk
0 2 K.

Therefore, H o' K is closed under the multiplication defined above.
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1. Topics in Group Theory

For associativity, note that if a, b, c 2 H and x, y, z 2 K, then we can use
Proposition 1.1.2 to obtain:

((a, x)(b, y))(c, z) = (a(x · b), xy)(c, z)
= (a(x · b)((xy) · c), xyz)
= (a(x · b)(x · (y · c)), xyz)
= (a(x · (b(y · c))), x(yz))
= (a, x)(b(y · c), yz)
= (a, x)((b, y)(c, z)).

To see that (1, 1) is the identity element of H o' K, note that '(k)(1) = 1
since '(k) is an automorphism on H, and if h 2 H and k 2 K,

(h, k)(1, 1) = (h(k · 1), k)
= (h'(k)(1), k)

= (h, k)

= (1(1 · h), k)
= (1, 1)(h, k).

Finally, we show that (k�1 · h�1
, k

�1) is the inverse of (h, k):

(h, k)(k�1 · h�1
, k

�1) = (h(k · (k�1 · h�1)), kk�1)

= (h((kk�1) · h�1), 1)

= (h(1 · h�1), 1)

= (hh�1
, 1)

= (1, 1)

and

(k�1 · h�1
, k

�1)(h, k) = ((k�1 · h�1)(k�1 · h), kk�1)

= (k�1 · (hh�1), 1)

= (k�1 · 1, 1)
= (1, 1).

(ii) It suffices to note the following: For a, b 2 H we have

ãb̃ = (a, 1)(b, 1) = (a(1 · b), 1) = (ab, 1) = fab

6



1.1. Semidirect Products

and for x, y 2 K we have

x̃ỹ = (1, x)(1, y) = (1(x · 1), xy) = (1, xy) = fxy.

(iii) To see that H o' K = eH eK, note that for any (h, k),

(h, k) = (h(1 · 1), 1k) = (h, 1)(1, k).

Now, recall that the normalizer of eH in Ho'K is the largest subgroup N( eH)

of H o' K such that eH is normal in N( eH), i.e. N( eH) = {g : g eHg
�1 = eH}.

Note that for h 2 H and k 2 K, we have

k̃h̃k̃
�1 = (1, k)(h, 1)(1, k�1)

= (1(k · h), k)(1, k�1)

= ((k · h)(k · 1), kk�1)

= (k · h, 1) = gk · h 2 eH.

Thus, eK ✓ N( eH). Now certainly eH ✓ N( eH) and since N( eH) is a subgroup,
we have H o' K = HK ✓ N( eH). Thus H o' K is the normalizer of eH and
therefore eH is a normal subgroup.

From now on, we will simply identify H,K with their isomorphic copies eH, eK in
the semidirect product. When there is no risk of confusion, we will write H oK

for a semidirect product of H and K. Note, however, that we can have different
semidirect products of H and K by choosing different homomorphisms

' : K ! Aut(H).

This is best illustrated by the following example.
Example 1.1.4. Let H be any abelian group and Z/2Z = hx : x2 = 1i be the
group of order 2. Since H is abelian, the map � : H ! H, �(h) = h

�1 is an
automorphism of H. Moreover, the map

'1 : Z/2Z ! Aut(H), x 7! �

is a homomorphism, since � is its own inverse. Also, let '2 be the trivial map
Z/2Z ! Aut(H) which maps everything in Z/2Z to the identity map on H.
Then, we can define the semidirect products H o'1 Z/2Z and H o'2 Z/2Z. In
general, they are not isomorphic. For instance, when H is cyclic of order n > 2,
the semidirect product Ho'1Z/2Z is isomorphic to the dihedral group D2n, which
is not abelian, while H o'2 Z/2Z is abelian.

7



1. Topics in Group Theory

In the example above, we saw a special case of the so-called direct product of groups.
The direct product of two groups H,K is the special case of the semidirect product,
when the homomorphism ' : K ! Aut(H) is trivial (i.e. when K acts trivially
on H). There are three equivalent definitions of the direct product as the next
theorem shows.

Theorem 1.1.5. Let H and K be groups and ' : K ! Aut(H) a homomorphism.
Then the following three conditions are equivalent.

(i) The homomorphism ' : K ! Aut(H) is trivial.

(ii) K is a normal subgroup of HoK (here, K is identified with what we denoted
as eK in theorem 1.1.3).

(iii) The operation on H oK is given with (h, k)(h0
, k

0) = (hh0
, kk

0).

Proof. We begin by showing the equivalence of (i) and (ii) and then we prove the
equivalence of (i) and (iii).

Suppose (i) holds. As we saw in the proof of Theorem 1.1.3(iii), we have (with
the identifications H = eH, K = eK, h = h̃ and k = k̃) k · h = khk

�1 for k 2 K,
h 2 H. Since the action of K on H is trivial, k · h = h, and thus h = khk

�1, so
hkh

�1 = k 2 K. Therefore, since H oK = HK, we have KCH oK, which gives
(ii).

Now suppose (ii) holds and let h, k be elements of H,K respectively. Since HCHo
K, we have kh

�1
k
�1 2 H and since K CH oK, we have hkh

�1 2 K. Therefore,
the commutator [h, k] = hkh

�1
k
�1 2 H\K = {1} is trivial, i.e. k ·h = khk

�1 = h.
This means that the action of K on H is trivial, i.e. the homomorphism ' is trivial.

Now if (iii) holds, hh0 = h(k · h0), i.e. k · h0 = h
0 for all k 2 K and h

0 2 H. Thus
the action of K on H is trivial, yielding (i). Reversing this argument gives that
(i) implies (iii).

To emphasize, we state the following definition.

Definition 1.1.6. A semidirect product H o K satisfying the three equivalent
conditions of Theorem 1.1.5 is called the direct product of H and K and is denoted
H ⇥K.

8



1.2. Nilpotent Groups

To identify when a group G (has a subgroup which) is isomorphic to a semidirect
product of two groups, we can use the following theorem.

Theorem 1.1.7. Let G be a group with a normal subgroup H and another subgroup
K such that H \K = {1}. Let ' : K ! Aut(H) be the homomorphism which is
obtained by mapping k to the automorphism h 7! khk

�1 of H. Then HK ⇠= HoK.
Further, if K is also normal in G, we have HK ⇠= H ⇥K.

Proof. The first part follows from the calculations in the beginning of this section,
and the proof of Theorem 1.1.3(iii).

The second part follows from the first and Theorem 1.1.5.

Definition 1.1.8. Let H be a subgroup of a group G. A subgroup K of G is
called a complement for H if G = HK and H \K = {1}.

With this terminology, Theorem 1.1.7 gives that to show that a given group G is
a semidirect product of some subgroups, it suffices to find a normal subgroup H

which has a complement K in G. Section 1.3 will partially answer the question
about when a given normal subgroup of a group, has a complement in the given
group.

1.2. Nilpotent Groups

An interesting class of groups that lies strictly between abelian and solvable groups
is the class of nilpotent groups:

Definition 1.2.1. For a group G, we define a sequence, called the upper central
series of G, of normal subgroups

Z0(G) ✓ Z1(G) ✓ Z2(G) ✓ · · · ,

in the following way:
Z0(G) = {1}, Z1(G) = Z(G)

and if Zi(G) has been defined, we define

Zi+1(G) = ⇡
�1(Z(G/Zi(G))

9



1. Topics in Group Theory

where ⇡ : G ! G/Zi(G) is the canonical projection. This means that

Zi+1(G)/Zi(G) = Z(G/Zi(G)).

If there exists an integer n such that G = Zn(G), then we say that G is nilpotent.

Remark 1.2.2. It is not obvious that Zi(G) is normal in G for all G, so that
needs to be proved:

Proof. We use induction on i. For i = 0, 1 it is clear. Suppose Zi(G) C G. Then
since

Zi+1(G)/Zi(G) = Z(G/Zi(G)),

we have that Zi+1(G)/Zi(G)CG/Zi(G), and by the fourth isomorphism theorem
(cf. Theorem A.1.4(v) in Appendix A.1), Zi+1(G)CG.

We immediately note an equivalent definition of nilpotence, via central series:

Definition 1.2.3. Let G be a group. A normal series

G = Kn ◆ Kn�1 ◆ · · · ◆ K0 = {1}

(i.e. such that Ki is a normal subgroup of G for all i) is called a central series of
G if Ki+1/Ki is contained in the center of G/Ki for i = 0, . . . , n� 1.

Proposition 1.2.4. A group G is nilpotent if and only if it possesses a central
series.

Proof. Clearly, if G is nilpotent then since G = Zn(G) for some integer n, we can
let Ki = Zi(G) for i = 0, . . . , n to obtain a central series of G.

For the other direction, suppose G has a central series

G = Kn ◆ Kn�1 ◆ · · · ◆ K0 = {1}.

We will show that Ki ✓ Zi(G) for all i. This will imply that G ✓ Zn(G), i.e. that
the upper central series of G terminates, which is the definition of nilpotence of G.
We use induction on i It is clear that K0 ✓ Z0(G). Now suppose Ki ✓ Zi(G) for
some i. We want to show that Ki+1 ✓ Zi+1(G). We have Ki+1/Ki ✓ Z(G/Ki).
Define the subgroup H of G such that Z(G/Ki) = H/Ki; then Ki+1 ✓ H. We will

10



1.2. Nilpotent Groups

show that H ✓ Zi+1(G). Now take h 2 H. Then hKi 2 H/Ki = Z(G/Ki) and
thus for all g 2 G, we have ghKi = hgKi, i.e.

hgh
�1
g
�1 2 Ki ✓ Zi(G).

Thus ghZi(G) = hgZi(G) for all g 2 G and thus

hZi(G) 2 Z(G/Zi(G)) = Zi+1(G)/Zi(G),

hence h 2 Zi+1(G), and we are done.

Lemma 1.2.5. If G is nilpotent, then every subgroup and quotient of G is nilpotent.

Proof. Let H be a subgroup of G and

G = Kn ◆ Kn�1 ◆ · · · ◆ K0 = {1}

a central series of G. Then we claim that

H = H \Kn ◆ H \Kn�1 ◆ · · · ◆ H \K0 = {1}

is a central series of H. It is clearly a normal series. Now, let i be given and ' :
H/(H \Ki) ! HKi/Ki be the natural isomorphism (given by h(H \Ki) 7! hKi).
Since H \Ki ✓ Ki ✓ Ki+1, we have

'((H \Ki+1)/(H \Ki)) = H(H \Ki+1)/Ki ✓ Ki+1/Ki ✓ Z(G/Ki)

and thus

'((H \Ki+1)/(H \Ki)) ✓ (HKi/Ki) \ Z(G/Ki)

✓ Z(HKi/Ki)

= Z('(H/(H \Ki)))

= '(Z(H/(H \Ki)))

since the isomorphism ' preserves the center. Since ' is an isomorphism, we see
that

(H \Ki+1)/(H \Ki) ✓ Z(H/(H \Ki)),

as desired.

To show that every quotient of G is nilpotent, it suffices to show that every
homomorphic image of G is nilpotent. So let ' be a homomorphism from G

to some group; we want to show that '(G) is nilpotent. Let a central series of G,

G = Kn ◆ Kn�1 ◆ · · · ◆ K0 = {1},

11



1. Topics in Group Theory

be given as before. We want to show that

'(G) = '(Kn) ◆ '(Kn�1) ◆ · · · ◆ '(K0) = {1},

is a central series for '(G), i.e. that it is a normal series and, given i, we have
'(Ki+1)/'(Ki) ✓ Z('(G)/'(Ki)). It is clear that '(Ki)C '(G) since

'(g)'(Ki)'(g)
�1 ✓ '(gKig

�1) ✓ '(Ki)

(because Ki is normal in G). Now take some '(k)'(Ki) 2 '(Ki+1)/'(Ki) where
k 2 Ki+1. We want to show that if g 2 G, then '(g)'(k)'(Ki) = '(k)'(g)'(Ki).
Now, since gkKi = kgKi for all g 2 G, and ' is a homomorphism, this is clear.
Thus we have

'(Ki+1)/'(Ki) ✓ Z('(G)/'(Ki)).

Lemma 1.2.6. If G is a non-trivial p-group, then the center Z(G) is non-trivial.

Proof. We have the class equation,

|G| = |Z(G)|+
rX

i=1

|G : CG(gi)|,

where g1, . . . , gr are representatives for the distinct conjugacy classes that lie
outside the center (see Appendix A.2). Since gi /2 Z(G), we have that the
centralizer CG(gi) is not all of G, hence p divides |G : CG(gi)|. Since G is
non-trivial, p also divides |G|, and then the equation gives that p divides |Z(G)|.
In particular, |Z(G)| > 1.

Definition 1.2.7. A characteristic subgroup of a group G is a subgroup H such
that ↵(H) ✓ H for all ↵ 2 Aut(G). In other words, a subgroup of G is characteristic
if it is invariant under all automorphisms of G.

Remark 1.2.8. All characteristic subgroups are normal subgroups, since normal
subgroups are those subgroups which are invariant under all inner automorphisms
of G.

Remark 1.2.9. If H is a characteristic subgroup of G, and ↵ is an automorphism
of G, then ↵(H) = H. To see that, note that ↵�1 is an automorphism of G, so
↵
�1(H) ✓ H and hence

H = ↵(↵�1(H)) ✓ ↵(H).

12



1.2. Nilpotent Groups

Lemma 1.2.10. Let A,B,C be groups such that A is a characteristic subgroup of
B, which in turn is a normal subgroup of C. Then A is a normal subgroup of C.

Proof. For any c 2 C, the map b 7! cbc
�1 is an automorphism of B (since B is

normal in C. Thus A is invariant under this map, implying that cAc�1 = A for all
c 2 C. But that means precisely that A is normal in C.

Lemma 1.2.11. Let P be a Sylow p-subgroup of G. Then the following are
equivalent:

(i) P is the unique Sylow p-subgroup of G;

(ii) P is normal in G;

(iii) P is characteristic in G.

Proof. Suppose (i) holds. Since for all g 2 G, gPg
�1 is a Sylow p-subgroup of G,

we have gPg
�1 = P for all g 2 G and hence P C G, i.e. (ii). Suppose (ii) holds.

Then, take any Sylow p-subgroup Q of G and note that by Sylow’s theorem (cf.
Appendix A.3, Theorem A.3.2(ii)) there exists g 2 G such that Q = gPg

�1 = P ,
since P CG. This gives (i).

Suppose (ii) holds. By the above argument, P is the unique Sylow p-subgroup of
G. Take an automorphism ↵ of G. Then ↵(P ) is a Sylow p-subgroup of G and
hence ↵(P ) = P , so P is characteristic in G, yielding (iii).

Finally, (iii) obviously implies (ii).

Now we can prove the following theorem, which gives convenient characterizations
of finite nilpotent groups.

Theorem 1.2.12. Let G be a finite group and let p1, . . . , ps be the distinct prime
divisors of |G|. Let Pi be a Sylow pi-subgroup of G for i = 1, . . . , s. Then the
following conditions are equivalent:

(i) G is nilpotent,

(ii) if H is a proper subgroup of G, then H is a proper subgroup of NG(H), its
normalizer in G,

13
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(iii) Pi CG for i = 1, . . . , s,

(iv) G ⇠= P1 ⇥ · · ·⇥ Ps,

(v) G has a normal subgroup of order d for every divisor d of |G|.

Proof. We will first show (i) ) (ii) ) (iii) ) (iv) ) (i) establishing equivalence
of the first four statements, and then we will show that (v) is equivalent to them
as well.

1. (i) ) (ii): We use induction on |G|. The statement is vacuously true if G is
trivial, settling the base case. Since G is nilpotent, its center is non-trivial.
Clearly, H C hH [ Z(G)i (since zhz

�1 = h for all z 2 Z(G), h 2 H), and if
Z(G) * H then H is properly contained in hH [ Z(G)i, which we just saw
is contained in the normalizer NG(H).

Now, if Z(G) ✓ H, then by the inductive hypothesis we have that H/Z(G)
is properly contained in its normalizer in G/Z(G) (since G/Z(G) is nilpotent
by Lemma 1.2.5). By the third isomorphism theorem (cf. Theorem A.1.3 in
Appendix A.1) we have that H/Z(G)CNG(H)/Z(G) and

NG(H)/H ⇠=
NG(H)/Z(G)

H/Z(G)
◆

NG/Z(G)(H/Z(G))

H/Z(G)
,

so NG(H)/H is non-trivial, as desired. Here, we used that

NG(H)/Z(G) ◆ NG/Z(G)(H/Z(G)),

which needs to be proved. Write NG/Z(G)(H/Z(G)) = M/Z(G). Then it
suffices to prove that H CM , but that is clear from the fourth isomorphism,
(cf. part (v) of Theorem A.1.4 in Appendix A.1), since H/Z(G)CM/Z(G).

2. (ii) ) (iii): Let some i be given and denote Pi by P and pi by p. Since
NG(P ) ✓ G, we have that P is a normal Sylow p-subgroup of NG(P ) and
thus by Lemma 1.2.11 we have that P is characteristic in NG(P ). By Lemma
1.2.10 we then have that P CNG(NG(P )). Therefore, NG(NG(P )) ✓ NG(P )
so NG(P ) is its own normalizer and thus since (ii) holds we have that
NG(P ) = G, which means that P CG.

3. (iii) ) (iv): We will show by induction on r that

P1P2 · · ·Pr
⇠= P1 ⇥ P2 ⇥ · · ·⇥ Pr.

14
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The base case is obvious. Since Pi C G by (iii) for all i we have that
P1P2 · · ·Pr�1 · Pr is a subgroup of G. Now the orders of P1 · · ·Pr�1 and
Pr are relatively prime and hence their intersection is trivial. Therefore, by
Theorem 1.1.7 we have that P1 · · ·Pr

⇠= P1 · · ·Pr�1⇥Pr, and by the inductive
hypothesis, P1 · · ·Pr�1

⇠= P1 ⇥ · · ·⇥ Pr�1, so we are done.

4. (iv) ) (i): We will use induction on |G|. Since both (i) and (iv) hold for
the trivial group, the base case is clear. Now, it is easy to see that

Z(P1 ⇥ · · ·⇥ Ps) = Z(P1)⇥ · · ·⇥ Z(Ps)

and
G/Z(G) = (P1/Z(P1))⇥ · · ·⇥ (Ps/Z(Ps)). (⇤)

Since G is non-trivial, some Pi is non-trivial and hence Z(Pi) is non-trivial
by Lemma 1.2.6. Thus, G/Z(G) is smaller than G and satisfies (iv) by (⇤).
Therefore, G/Z(G) is nilpotent by the inductive hypothesis. Thus, there
exists n such that Zn(G/Z(G)) = G/Z(G) where (Zi(G/Z(G)))i�0 denotes
the upper central series of G/Z(G). Now, Z2(G)/Z(G) = Z(G/Z(G)) =
Z1(G/Z(G)). We will show by induction on i that

Zi(G)/Z(G) = Zi�1(G/Z(G)).

Now, by induction and repeated use of the third isomorphism theorem,

Zi�1(G/Z(G))/Zi�2(G/Z(G)) = Z((G/Z(G))/Zi�2(G/Z(G)))

= Z((G/Z(G))/Zi�1(G)/Z(G))
⇠= Z(G/Zi�1(G))

= Zi(G)/Zi�1(G)
⇠= (Zi(G)/Z(G))/(Zi�1(G)/Z(G))

= (Zi(G)/Z(G))/Zi�2(G/Z(G)),

i.e.
Zi(G)/Z(G) = Zi�1(G/Z(G))

as desired. Thus,

Zn+1(G)/Z(G) = Zn(G/Z(G)) = G/Z(G),

i.e. Zn+1(G) = G, so G is nilpotent.

5. Suppose G is nilpotent, i.e. that (i) � (iv) hold. We will use induction on
|G| to show that (v) holds. If G is trivial, then the statement that G has a

15
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normal subgroup of any order dividing |G| is of course true. Suppose G is
non-trivial. Since G is nilpotent, it has non-trivial center. Let d be a divisor
of |G| and take some prime p dividing |Z(G)|. Then there exists an element
g 2 Z(G) of order p. Since N = hgi ✓ Z(G), we have that NCG. The group
G/N then has a subgroup of any given order dividing |G|/|N | = |G|/p. If p
divides d, then G/N has a subgroup H/N of order d/p, so H is a subgroup
of G of order d. So suppose p does not divide d. Then d divides |G/N |
and thus G/N has a subgroup H/N of order d; H is then a subgroup of G
of order pd. Now, if H is a proper subgroup of G then we are done, since
then H has a subgroup of order d, which is also a subgroup of G. Finally,
assume H = G. Then G has order dp with d, p relatively prime. We can
assume p = ps. Since all Sylow subgroups of G are normal, then we have
that P1 · · ·Ps�1 is normal in G, of order d, and we are done.

6. (v) ) (iii): Take the highest power of pi dividing |G| to obtain a Sylow
pi-subgroup of G which is normal in G.

1.3. Wreath Products and a Theorem of Schur

What follows in this section is mainly based on the text of Kargapolov and
Merzljakov [7], but Keith Conrad’s notes [2] were also helpful. The aim is to
prove the following theorem of Schur

Theorem 1.3.1. (Schur) Let G be a finite group and H C G. If |H| and |G/H|
are relatively prime, then H has a complement in G.

We begin with a few definitions.

Definition 1.3.2. Let A and B be groups. Then the set A[B] of all maps B ! A

forms a group with the operation defined as follows: for f, g 2 A
[B], we define

fg : B ! A with (fg)(b) = f(b)g(b) for all b 2 B.

We should check that the operation defined above on A
[B] satisfies the group

axioms. Indeed, associativity follows directly from associativity of the operation
of A, the identity element is the trivial map which maps every element of B to
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1.3. Wreath Products and a Theorem of Schur

the identity 1 of A. Finally, the multiplicative inverse of f : B ! A is the map
g : B ! A, g(x) = (f(x))�1.

For each f 2 A
[B], we can define another map f

b : B ! A by setting

f
b(x) = f(b�1

x)

for all x 2 B.

Proposition 1.3.3. The map b̂ : A
[B] ! A

[B], f 7! f
b, is an automorphism.

Moreover, the map B ! Aut(A[B]), b 7! b̂, is a homomorphism.

Proof. Note that b̂ is an endomorphism, since for all x 2 B and f, g 2 A
[B], we

have
b̂(fg)(x) = (fg)(b�1

x) = f(b�1
x)g(b�1

x) = b̂(f)(x)b̂(g)(x).

Further, the inverse of b̂ is clearly cb�1, and thus b̂ is an automorphism.

To see that b 7! b̂ is a group homomorphism, note that for all b1, b2, x 2 B and
f 2 A

[B],

db1b2(f)(x) = f
b1b2(x)

= f((b1b2)
�1
x)

= f(b�1
2 b

�1
1 x)

= f
b2(b�1

1 x)

= (f b2)b1(x)

= bb1(f b2)(x)

= (bb1 � bb2)(f)(x),

so we have db1b2 = bb1 � bb2

Now we can use the homomorphism ' from Proposition 1.3.3 to define a semidirect
product of A[B] and B, called the wreath product of A and B.

Definition 1.3.4. Let A and B be groups and let ' : B ! Aut(A[B]) be the
homomorphism defined by '(b) = b̂. Then the semidirect product A

[B] o' B is
called the wreath product of A and B and is denoted A Wr B.
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1. Topics in Group Theory

Let us now see how the multiplication in a wreath product behaves. Let two
elements (f1, b1), (f2, b2) 2 A Wr B be given. Recall that f1, f2 are maps A ! B.
The action of the element b1 on f2 is given with

b1 · f2 = '(b1)(f2) = b̂1(f2) = f
b1
2 ,

i.e. f b1
2 is the map

x 7! f2(b
�1
1 x), x 2 B.

So we have
(f1, b1)(f2, b2) = (f1(b1 · f2), b1b2) = (f1f

b1
2 , b1b2)

Definition 1.3.5. We say that a group G is an extension of A by B if A is a
normal subgroup of G and B = G/A.

Definition 1.3.6. An embedding of a group G into another group � is an injective
homomorphism ' : G ! �. If an embedding G ! � exists, we say that G can be
embedded in �.

Now we are ready for a lemma, crucial to proving Schur’s theorem (1.3.1).

Theorem 1.3.7. (Kaluznin-Krasner) Every extension of a group A by a group B

can be embedded in the wreath product W = A Wr B.

Proof. Let G be an extension of A by B, i.e. A C G and B = G/A. Define a
transversal ⌧ : B ! G, i.e. a map which takes every element xA of B = G/A to
an element ⌧(xA) 2 xA. For every g in G, define a map fg : B ! A by

fg(xA) = (⌧(xA))�1
g⌧(g�1

xA).

We need to show that fg indeed maps B into A. But since ⌧(xA) = xa1 for some
a1 2 A, and ⌧(g�1

xA) = a2 for some a2 2 G, we have

fg(xA) = (xa1)
�1
g(g�1

xa2) = a
�1
1 a2 2 A,

that fact is clear.

Note that if g, h 2 G and xA 2 B, then

(fgf
gA
h )(xA) = fg(xA)fh(g

�1
xA)

= (⌧(xA))�1
g⌧(g�1

xA)(⌧(g�1
xA))�1

h⌧(h�1
g
�1
xA)

= (⌧(xA))�1
gh⌧((gh)�1

xA)

= fgh(xA).
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1.3. Wreath Products and a Theorem of Schur

This fact enables us to define the homomorphism

 : G ! W = A Wr B,  (g) = (fg, gA).

To see that it is a homomorphism, note that

 (g) (h) = (fg, gA)(fh, hA)

= (fgf
gA
h , ghA)

= (fgh, ghA)

=  (gh).

Finally, we conclude the proof by showing that  is injective. Take g 2 Ker .
Then (fg, gA) is the identity element of W , i.e. fg is the trivial map and gA = A.
Therefore, g 2 A and fg(xA) = 1 for all xA 2 B, i.e.

(⌧(xA))�1
g⌧(xA) = 1

for all x 2 B, which implies g = 1. Thus Ker = {1}, i.e.  is injective and hence
an embedding of G into W .

Let  be the embedding from Theorem 1.3.7 and W = A Wr B. Then it is easy
to see that W = A

[B]
 (G): We want to write any element (f, xA) as

(f 0
, A) (g) = (f 0

, A)(fg, gA) = (f 0
f
A
g , gA) = (f 0

fg, gA)

for some g 2 G (here, we have, as usual, identified A
[B] with the group which was

denoted gA[B] in theorem 1.1.3). But that is easy, take g = x and f
0 = ff

�1
x .

Moreover, we have that  (G)\A
[B] ⇠= A. To see that, note that elements in  (G)

have the form (fg, gA) for g 2 G, and elements in A
[B] have the form (f, A) where

f : B ! A is a map. Therefore, the elements of the intersection have the form
(fa, A) where a 2 A. Now the desired isomorphism  (G) \ A

[B] ! A is given by
(fa, A) 7! a. It is clearly bijective, and to see that it is operation-preserving, note
that (fa1 , A)(fa2 , A) = (fa1a2 , A), since a1, a2 2 A.

Lastly, for proving Schur’s theorem, we need a lemma which is proved using
representation theory, in particular Maschke’s theorem (see Appendix A.4).

Lemma 1.3.8. Let H be a normal elementary abelian p-subgroup of a group G,
i.e. H ⇠= (Z/pZ)n for some n 2 N, where p is a prime. Suppose further that p does
not divide |G : H|. If K is a normal subgroup of G contained in H, then there
exists a normal subgroup L of G such that H = K ⇥ L
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Proof. We define a vector space structure on H over the finite field Fp = Z/pZ,
and an action of G on H making H into an Fp(G/H)-module. Define addition of
h1, h2 2 H by h1 + h2 = h1h2 and multiplication by a scalar � 2 {0, 1, . . . p � 1}
as �h = h

�. With this notation, it is clear that the action of G/H on H by
conjugation, i.e. (gH) · h = ghg

�1 for all g 2 G, h 2 H, satisfies the properties of
the definition of an FG-module (cf. Appendix A.4). This action is well defined,
since if g1H = g2H, and h 2 H, there exists h0 2 H such that g1 = g2h0, and
g1hg

�1
1 = g2h0hh

�1
0 g

�1
2 = g2hg

�1
2 , since H is abelian. Since p does not divide

|G/H|, Maschke’s theorem (A.4.3) is applicable here. The action of G/H on H

was defined as conjugation, and hence the submodules of H as an Fp(G/H)-module
are exactly the subgroups of H which are normal in G. So let K be a subgroup
of H which is normal in G, i.e. an Fp(G/H)-submodule of H. Then Maschke’s
theorem gives that there exists a submodule L of H, i.e. a normal subgroup L of
G contained in H, such that H = K � L = K ⇥ L.

Now we are ready to prove the main theorem. We state it again:

Theorem 1.3.9. (Schur) Let G be a finite group and ACG. If |A| and |G/A| are
relatively prime, then A has a complement in G.

Proof. We divide the proof into two parts, 1 and 2. In part 1, we will settle the
case where A is elementary abelian, and then in part 2 we will reduce the general
case to the case of part 1 by induction.

1. Suppose A is an elementary abelian p-group and let B = G/A. By the
Kaluznin-Krasner Theorem (1.3.7), we can embed G in the wreath product
W = A Wr B. Identify G with its isomorphic copy inside W and recall that

W = A
[B]

G.

We also had A ⇠= G \ A
[B] and we make the identification

A = G \ A
[B]

.

Now A,B are finite and A
[B] is just the direct product of A with itself |B|

times. Therefore, A[B] is an elementary abelian p-group as well. Since A is
normal in both A

[B] and G, we have that A is normal in W = A
[B]

G. Thus
by Lemma 1.3.8 we have a normal subgroup C of W such that A[B] = A⇥C.
Now, since G \ A

[B] = A and W = A
[B]

G, we have W = CG. Further, by
the second isomorphism theorem (see Appendix A.1),

W/C = CG/C ⇠= G/(C \G) ⇠= G.
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Moreover, we have B \ C ✓ B \ A
[B] = {1}, so by the second isomorphism

theorem again,
CB/C ⇠= B/B \ C ⇠= B,

but BC/C is a subgroup of W/C and so B is (isomorphic to) a subgroup of
G, concluding this case.

2. For the general case, we proceed by induction on |G|. Suppose G is a minimal
counterexample, i.e. that the theorem is true of all proper subgroups and
quotients of G, but not of G. To obtain a contradiction, it suffices to show
that G has a subgroup of order |B| = |G : A|, since subgroups of relatively
prime orders have trivial intersection and thus, since A is a normal subgroup
of G, their product is the whole group G. Let p be a prime divisor of |A|
and P a Sylow p-subgroup of A. Since A and |G : A| are relatively prime, p
does not divide |G : A| and thus P is a Sylow p-subgroup of G. Since ACG,
all conjugates of P are contained in A and therefore, by Sylow’s theorem
(A.3.2), all Sylow p-subgroups of G are contained in A. Further, the number
of Sylow p-subgroups of A is equal to the number of Sylow p-subgroups of
G, so by Sylow’s theorem, we have

|G : NG(P )| = |A : NA(P )|.

Clearly, we have NA(P ) = A \NG(P ). Thus we have

|G : NG(P )| = |A : A \NG(P )|,

i.e.
|G|/|NG(P )| = |A|/|A \NG(P )|,

i.e.
|G : A| = |NG(P ) : A \NG(P )| (1.1)

Now, suppose P is not normal in G, i.e. NG(P ) 6= G. Since A \NG(P ) is a
normal subgroup of NG(P ), and its order is relatively prime to its index in
NG(P ) by equation 1.1, the group NG(P ) along with the subgroup A\NG(P )
satisfies the conditions of the theorem. Thus NG(P ) has a subgroup of order
|G : A|, which is then also a subgroup of G, so we have our contradiction.

Assume P is normal in G. Then by the third isomorphism theorem, the
group A/P is normal in G/P and (G/P )/(A/P ) ⇠= G/A; in particular,
|G/P : A/P | = |G : A|. Thus the theorem is true for the group G/P

along with the subgroup A/P and hence there exists a subgroup H of G

containing P , such that

|H : P | = |H/P | = |G : A|. (1.2)
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In particular, |H : P | is not divisible by p. Since P is a non-trivial p-group,
it has non-trivial center Z by Lemma 1.2.6. Clearly, Z CH, and so by the
third isomorphism theorem we have that P/Z CH/Z and

|H/Z : P/Z| = |H : P | = |G : A|

by equation 1.2. So P/Z is a p-group while its index in H/Z is not divisible
by p. Hence the theorem is true for the groups H/Z and P/Z, so H contains
a subgroup K which contains Z, such that |K/Z| = |H : P | = |G : A|. Now,
Z CK, Z is a p-group and

|K : Z| = |K/Z| = |G : A|

so the group K along with its subgroup Z satisfy the hypotheses of the
theorem. If K 6= G, we conclude that K, and hence G, has a subgroup of
order |K : Z| = |G : A|, a contradiction. Hence K = G. Thus, since K ✓ H,
we have H = G and since |G : P | = |H : P | = |G : A| we conclude that
A = P .

Now suppose A is non-abelian. Then we can go through the whole argument
again replacing P with A and H with G, and obtain a subgroup K/Z of G/Z

of order |G : A| (here, again, Z = Z(P ) = Z(A)). Then |K| = |Z||G : A|.
Since A is non-abelian, |Z| < |A| and thus |K| < |G|, so K is a proper
subgroup of G and we have a contradiction as before.

Suppose A is abelian. Consider the subgroup Ap = {a 2 A : ap = 1}. This is
a subgroup of A (necessarily normal, since A is abelian), and we can replace
Z in the above paragraph by Ap, so if Ap is a proper subgroup of A, we again
have a contradiction.

We conclude that Ap = A, i.e. A is an elementary abelian p-group, which
was dealt with in part 1 of this proof, and we are done.
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In this chapter, the results of research on palindromes in finite groups is presented
(Section 2.1), along with an application where palindromes in groups are used to
partially solve the Magnus-Derek game (Section 2.2).

2.1. Civic groups

Definition 2.1.1. We say that a group G is civic if any subset P of G satisfying
the properties

• 1 2 P

• a, b 2 P ) aba 2 P

is a subgroup of G. We say that a subset P satisfying the above properties is
palindromic in G.

Definition 2.1.2. Let G = hXi be a group. A palindrome in X or X-palindrome
(or simply palindrome if there is no confusion about the generating set) is a word
in the alphabet X [X

�1 which reads the same from left to right and from right
to left. Denote by lX(g) the smallest natural number k such that g can be written
as a product of k palindromes in the alphabet X [ X

�1. The number lX(g) is
called the palindromic length of g. The palindromic width of G with respect to X

is denoted by pw(G,X) and defined as the upper bound of the set of palindromic
lengths of the elements of G, i.e.

pw(G,X) = sup
g2G

lX(g).

Finally, when we simply talk about the palindromic width of G and use the notation
pw(G), it should be taken to mean the supremum of palindromic widths over all
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possible generating sets of G, i.e.

pw(G) = sup{pw(G,X) : X ✓ G and G = hXi}.

Lemma 2.1.3. Let G be a finite group and P ✓ G palindromic. Suppose a 2 P .
Then a

k 2 P for all k.

Proof. The statement is clearly true for k = 0, 1. Suppose k � 2 and a
m 2 G for

all m < k. Then a
k = a(ak�2)a 2 P . Hence by induction, ak 2 P for all k.

A palindromic subset P of a finite group G like in Defintion 2.1.1 is closed under
taking inverses (because of Lemma 2.1.3). To show that a group is civic, it therefore
suffices to prove that any such set is closed under the group operation.

Proposition 2.1.4. A civic group G has palindromic width 1 (with respect to all
generating sets).

Proof. Suppose G = hXi is civic. Let P (X) be the set of all X-palindromes in
G. Then clearly P (X) is palindromic in G and hence a subgroup. Then since
X ✓ P (X), we have hXi ✓ P (X) and therefore P (X) = G. Since the generating
set X was chosen arbitrarily, the result is clear.

Proposition 2.1.5. If G is civic, then all subgroups and quotients of G are civic.

Proof. Take a subgroup H of G and a palindromic subset P ✓ H. Then P is a
subgroup of G and hence of H.

For quotients, it suffices to show that any homomorphic image of G is civic. Take a
homomorphism ' from G to some group. Suppose P ✓ '(G) is palindromic. Then
if a, b 2 '

�1(P ), we have '(a),'(b) 2 P , and thus '(aba) = '(a)'(b)'(a) 2 P

which implies aba 2 '
�1(P ). Therefore '˘1(P ) is palindromic in G and since G is

civic, '�1(P ) is a subgroup of G; hence P = '('�1(P )) is a subgroup of '(G).

As the next two lemmas show, all abelian groups of odd order are civic, while in
the even order case there is a very small counterexample.
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Lemma 2.1.6. If G is an abelian group of odd order, then G is civic.

Proof. Let P be a palindromic subset of G. It suffices to show that a, b 2 P implies
that ab 2 P . Let 2m� 1 = ord(b). Then b

m 2 P by Lemma 2.1.3, and hence

ab = ab
2m = b

m
ab

m 2 P.

Lemma 2.1.7. The Klein 4-group Z/2Z⇥ Z/2Z is not civic.

Proof. The group has presentation ha, b : a2 = b
2 = aba

�1
b
�1 = 1i. It is easy to

check that the set {1, a, b} is palindromic but not a subgroup.

Lemma 2.1.8. If G is a group such that G/Z(G) is cyclic, then G is abelian.

Proof. Suppose G/Z(G) = hxZ(G)i where x 2 G. Then every element of G can
be written in the form x

r
z where r is an integer and z 2 Z(G). Take two elements

x
r
z1, x

s
z2 2 G, where z1, z2 2 Z(G). Then

(xr
z1)(x

s
z2) = x

r+s
z2z1 = (xs

z2)(x
r
z1)

so G is abelian.

Theorem 2.1.9. If G is a 2-group, then G civic if and only if it is cyclic.

Proof. Any finite cyclic group is obviously civic.

For the other direction, let G be a minimal counterexample, i.e. a non-cyclic, civic
2-group such that every smaller civic 2-group is cyclic. Since G is a 2-group, it is
nilpotent and hence has non-trivial center. By minimality of G, G/Z(G) is cyclic
and hence G is abelian by Lemma 2.1.8. Therefore, G is a non-cyclic, abelian
2-group and hence contains a subgroup isomorphic to the Klein 4-group, which is
not civic by Lemma 2.1.7, so G is not civic, contradiction.

To study civic groups further, Theorem 2.1.9 allows us to consider only groups
with cyclic Sylow 2-subgroup; if a group has a non-cyclic Sylow 2-subgroup, then
said Sylow 2-group is a non-civic subgroup, and by Theorem 2.1.5, the group G
must be non-civic itself.

Burnside proved the following (see [1, 10])
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2. Palindromes and Games

Lemma 2.1.10. Let G be a finite group and p the smallest prime divisor of |G|. If
G has a cyclic Sylow p-subgroup H, then G = KH where K is a normal subgroup
of order prime to p.

Lemma 2.1.10 implies that any civic group must be a semidirect product of an odd
order normal subgroup, and a cyclic 2-group. We will show that for the group to
be civic, this product must in fact be direct.

Proposition 2.1.11. Suppose G = H ⇥ K with gcd(|H|, |K|) = 1. Then G is
civic if and only if H and K are civic.

Proof. If G is civic, then H and K are too since they are subgroups.

For the other direction, suppose P ✓ H ⇥ K is palindromic, and let (a, b) 2 P .
Since P is palindromic, it is closed under raising to positive powers, so (am, bm) 2 P

for all m. So if m = ord(b), then (am, 1) 2 P . But since gcd(m, ord(a)) = 1, there
exists n such that a

nm = a and hence (a, 1) 2 P . A similar argument shows that
(1, b) 2 P .

Thus, (a, b) 2 P implies (a, 1) and (1, b) 2 P . So if (a, b), (a0, b0) 2 P , then we
have (a, 1), (a0, 1) 2 P and (1, b), (1, b0) 2 P . Because H is civic, we have that
{x : (x, 1) 2 P} is a subgroup of H (since the image of palindromic sets is
palindromic). Thus (aa0, 1) 2 P and similarly (1, bb0) 2 P .

Without loss of generality, suppose |H| is odd (|H| and |K| cannot both be even).
So

(aa0, 1)m(1, bb0)(aa0, 1)m = ((aa0)2m, bb0) 2 P

for all m, and (because |H| is odd) we can choose m such that 2m� 1 = ord(aa0).
Thus, (aa0, bb0) 2 P , which shows P is closed under multiplication and hence a
subgroup (since G is finite).

Theorem 2.1.12. A finite group G is civic if and only if G = N ⇥H where N is
civic of odd order and H is a cyclic 2-group.

Proof. Suppose G = N ⇥H where N is civic of odd order and H is a cyclic (and
hence civic) 2-group. Then by Proposition 2.1.11, G is civic.

Suppose G is civic. We know that G is a semidirect product, G = N o H with
N and H as above, by Lemma 2.1.10. Suppose G is a minimal counterexample,
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2.1. Civic groups

i.e. with the semidirect product not direct. Let H = hai and let K = N ⇥ H1

where H1 = ha2i.

First we show that H1 is the unique subgroup in K of order |H1| = 2n�1. suppose
there is another subgroup H2 of the same order. Then H1, H2 are both Sylow
2-subgroups of K and thus conjugate (see Theorem A.3(ii) in the appendix).
Therefore, there exists g 2 K such that H2 = gH1g

�1 = H1, since H1 is normal
in K. This implies that H1 is characteristic in K (by Lemma 1.2.11) and hence
normal in G (by Lemma 1.2.10).

Next we show that H is normal in G. Take some g 2 G. We want to show that
gag

�1 = a
k for some integer k. Since gha2ig�1 = ha2i, there exists an integer k

such that (gag�1)2 = ga
2
g
�1 = a

2k and hence gag
�1 = a

k or gag
�1 = a

k+2n�1 .

Since N and H have relatively prime orders, H\N = {1} and since both subgroups
are normal in G, we are done.

Now we have reduced the classification of civic groups to the classification of odd
order civic groups. The aim of the rest of this section is to understand those better.

Definition 2.1.13. Let G be a group and fix a generating set X. Let w be a word
in the alphabet X [X

�1. Denote by |w| the corresponding group element. Define
w as the word obtained by reversing the word w. We say that a group is reversible
with respect to X or X-reversible if it satisfies the property

|w1| = |w2| , |w1| = |w2|

for all words w1, w2.

Remark 2.1.14. Let G = hXi be a group and suppose that G is X-reversible.
Let g 2 G. If w1 and w2 are words such that |w1| = |w2| = g, then we know that
|w1| = |w2|. Therefore we will use the notation g for the unique group element
which is obtained by reversing any word that gives g. In general however, many
different group elements can be obtained from g by writing it as different words
and reversing them.

Lemma 2.1.15. Let P (X) be the set of all X-palindromes in a group G = hXi
of odd order. Suppose there exists a nontrivial normal subgroup H of G such that
H ✓ P (X). Then pw(G,X) = pw(G/H,X/H), where X/H = {xH : x 2 X}.

Proof. Obviously, pw(G,X) � pw(G/H,X/H).
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2. Palindromes and Games

Next we show that pw(G,X)  pw(G/H,X/H). Let k = pw(G/H,X/H). Then
one can write every element of G/H as p1 · · · pkH where p1, . . . , pk 2 P (X).
Therefore, every element of G can be written in the form p1 · · · pkh where h 2 H.
Now it suffices to show that pkh 2 P (X). Note that we can write pk = p

2 where
p 2 P (X) since G has odd order (in fact, p = p

(ord(pk)+1)/2
k ). Thus

p
2
h = p(php�1)p 2 P (X)

since php
�1 2 H by normality, and since H ✓ P (X) we have that php�1, and thus

also p(php�1)p, is a palindrome.

Let G = hXi be a group. Fink and Thom [5, Proposition 3] show that the set
H = {|w| 2 G : w is a word in X and |w| = 1} is a normal subgroup of G. If G
is not X-reversible, then that subgroup is non-trivial. Since the word ww is an
X-palindrome, and |ww| = |w||w| = |w| if |w| 2 H, Lemma 2.1.15 allows us to
restrict our attention to reversible groups in some minimal cases. In particular,
if G is a minimal example of a group of odd order and palindromic width > 1,
then there must be some generating set X with respect to which G is reversible:
otherwise by minimality of G, G/H has palindromic width 1, where H is defined
as above, contradicting that G has greater palindromic width by Lemma 2.1.15.

Lemma 2.1.16. Let G = hXi be a group of odd order and suppose that G is
X-reversible, let N = {g 2 G : g = g

�1} and let P (X) be the set of X-palindromes
of G. Then every element of G can be written uniquely as pn where p 2 P (X) and
n 2 N .

Proof. Since every palindrome is the square of a palindrome (as we saw in the
proof of Lemma 2.1.15), we can write gg = p

2 with p 2 P (X). Hence g = p(pg�1).
Write k = pg

�1. Then p
2 = gg = pkpk = pkkp = pkkp implying kk = 1 and hence

k 2 N .

For uniqueness, suppose pn = qm where p, q 2 P (X) and n,m 2 N . Then
pn = qm, i.e. np = mp. Thus pnnp = qmmq so p

2 = q
2 and hence p = q. This in

turn implies that n = m.

As a bonus, we obtain the following corollary:

Corollary 2.1.17. The number of X-palindromes of an odd order group G = hXi
divides the order of the group.
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2.1. Civic groups

Proof. Suppose G is X-reversible. First we show that the set N ✓ G defined in
Lemma 2.1.16 is a subgroup of G. Indeed, if n1, n2 2 N , then

(n1n2) = n2 n1 = n
�1
2 n

�1
1 = (n1n2)

�1

and
(n�1

1 ) = (n1)
�1 = (n�1

1 )�1
,

as desired. Now the result follows from Lemma 2.1.16.

If G is not X-reversible, then take the normal subgroup

H = {|w| 2 G : w is a word in X and |w| = 1}CG

and consider the group G/H. If G/H is X/H-reversible, then the number of
X/H-palindromes in G/H divides |G|/|H| as shown above, and for any X/H-
palindrome rH of G/H we obtain |H| different X-palindromes r|ww| = |w|r|w|
of G (where |ww| = |w| 2 H, since |w| = 1). If G/H is not X/H-reversible, we
repeat and take the quotient by the group

H2 = {|w| 2 G/H : w is a word in (X/H) and |w| = 1}.

Eventually, this process must stop since we are start with a finite group.

We need the following Lemma, which is proved in Robinson [9, p. 148].

Lemma 2.1.18. If G is a non-trivial finite solvable group and H a minimal normal
subgroup, then H = (Z/pZ)r for some integer r � 1 and prime p.

In the rest of this section, G will denote a minimal odd order group with respect
to the property pw(G) > 1, i.e. a group of odd order such that pw(G) > 1
and pw(H) = 1 whenever H is a quotient or subgroup of G. We may assume
pw(G,X) > 1 where G = hXi is X-reversible, as noted above (follows from
Lemma 2.1.15). To clarify: G will have palindromic width 1 with respect to every
generating set, with respect to which G is not reversible. The goal is to arrive
at Theorem 2.1.26, i.e. prove that G is a p-group for some prime p, or that
G = (Z/pZ)r o (Z/qZ) for distinct primes q, p.

Lemma 2.1.19. If G = hXi is X-reversible and civic, then G is abelian.

Proof. Take x, y 2 X. Then there exists an X-palindrome w such that xy = |w|.
Then yx = |w| = |w| = xy, hence G is abelian.
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2. Palindromes and Games

Lemma 2.1.20. For any non-trivial normal subgroup H of G, the quotient G/H

is abelian.

Proof. For any nontrivial normal subgroup H of G, G/H is X/H-reversible with
palindromic width 1, since xy = xy = yx for generators x, y 2 X/H (xy is uniquely
determined because G/H is X/H-reversible), and thus G/H is abelian.

Lemma 2.1.21. The derived subgroup G
0 = h{xyx�1

y
�1 : x, y 2 G}i of G is

elementary abelian, i.e. G
0 = (Z/pZ)r for some integer r and prime p.

Proof. By the Feit-Thompson theorem [4], G is solvable, so if H is a minimal
normal subgroup, we have H = (Z/pZ)r for some integer r by Lemma 2.1.18. Thus
it suffices to show that G

0 is a minimal normal subgroup of G. It is well-known
to be normal. Since G is not abelian, G0 is nontrivial. Further, it is contained in
any non-trivial normal subgroup H of G since for all x, y 2 G, Lemma 2.1.20 gives
that xyH = yxH i.e. x�1

y
�1
xyH = H i.e. x�1

y
�1
xy 2 H.

Lemma 2.1.22. Every proper subgroup of G is civic.

Proof. Let H be a proper subgroup of G. Note that H has palindromic width 1,
and every subgroup of H has palindromic width 1. We want to show that H is
civic. Take a palindromic subset P of H. Since pw(hP i, P ) = 1, every element
of hP i can be written as a palindrome in the letters of P , but these are precisely
the elements of P (since P is palindromic). Hence P = hP i is a subgroup of H.
Therefore H is civic.

Lemma 2.1.23. If r, s are two non-commuting X-palindromes, then G = hr, si.

Proof. Suppose there exist non-commuting X-palindromes r, s such that

H = hr, si 6= G.

By minimality of G, the set of {r, s}-palindromes is a palindromic subset and hence
a subgroup of H, since H is civic by Lemma 2.1.22.

Now we show that H is {r, s}-reversible. Let w, v be words in X such that r = |ww|
and s = |vv|. Suppose u is a word in the alphabet {r, s}. Let u0 be the word in X

obtained from u by replacing each occurence of r and s in u with the words ww

and vv respectively. Then, since ww = ww and vv = vv, we obtain that |u| = |u0|.
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2.1. Civic groups

We conclude that H is civic and reversible, and hence abelian (by Lemma 2.1.19,
contradicting the assumption that r, s do not commute. Therefore, G = hr, si.

Lemma 2.1.24. The center Z(G) contains no non-trivial X-palindromes.

Proof. Let P (X) be the set of X-palindromes in G and let H = P (X) \ Z(G). It
suffices to show that H is a normal subgroup of G, since H ✓ P (X) and then by
Lemma 2.1.15, H being nontrivial would contradict the fact that pw(G,X) > 1.
Take g1, g2 2 H. Since g1, g2 2 Z(G), we have that g1g2 = g2g1 = g1g2 is a
palindrome. Thus H is closed under multiplication. Clearly it is also closed under
inverses. This means that H is a subgroup of G, and since it is contained in the
center, it is normal in G, and we are done.

Lemma 2.1.25. The number of X-palindromes of G is at least |Cx||Cy| where x, y

are non-commuting palindromes of G and Cx = {g 2 G : gx = xg and g = g} is
the set of X-palindromes commuting with x.

Proof. First we show that Cx forms an abelian group. Note that Cx is contained in
CG(x), the centralizer of x in G, which is a proper subgroup of G since y /2 CG(x).
Let g1, g2 2 Cx. Then hg1, g2i ✓ CG(x) 6= G and hence the X-palindromes g1, g2

do not generate the whole group G. Therefore they commute and hence g1g2 is
an X-palindrome (because G is X-reversible), so g1g2 2 Cx. Obviously g

�1
1 2 Cx,

and we obtain that Cx is an abelian subgroup of G.

Since Z(G) contains no X-palindromes by Lemma 2.1.24, it is clear that if x, y are
non-commuting palindromes, Cx\Cy = {1}. Further, Cx = Cg for all g 2 Cx such
that g 6= 1.

To show that the number of palindromes of G is at least |Cx||Cy| where x, y are
non-commuting palindromes, we will show that if a, b 2 Cx and c, d 2 Cy then
aca = bdb if and only if a = b and c = d, implying that the set

{aca : a 2 Cx, c 2 Cy},

which consists of X-palindromes, has |Cx ⇥ Cy| = |Cx||Cy| different elements.

Suppose aca = bdb and define z = ab
�1. Then d = b

�1
acab

�1 = ab
�1
cab

�1 = zcz.
It suffices to show that z = 1. Now cd = dc so czcz = zczc implying cz = zc since
the order of G is odd. Therefore z 2 Cx \ Cc = Cx \ Cy = {1}.
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2. Palindromes and Games

Now let N be as in Lemma 2.1.16. Take n 2 N and write n = x
2. Then x 2 N so

x = x
�1. Since G/G

0 is abelian, xG0 = xG
0 so nG

0 = x
2
G = x

�1
xG

0 = G
0. Hence

N ✓ G
0.

Consider two cases

(i) Suppose N = G
0. Then N is a normal subgroup of G. Take a generator

x 2 X and let h 2 N . We have

N 3 x
�1
h
�1
x = xhx�1 = (xhx�1)�1 = xh

�1
x
�1

and hence
x
2
h = hx

2
.

Therefore, N ✓ Z(G) since |G| is odd and is thus G is generated by the
squares of any given generators. There must exist two non-commuting X-
palindromes, since otherwise the group would be abelian. Let x, y be non-
commuting X-palindromes of G. By Lemma 2.1.23, G = hx, yi. Thus G/G

0

is generated by xG
0 and yG

0, so |G/G
0| divides ord(x)ord(y). Recall that

|G/G
0| is the number of palindromes. Further, we have that the number of

palindromes is at least |Cx||Cy| by Lemma 2.1.25. Therefore,

|Cx||Cy|  |G/G
0|  ord(x)ord(y)  |Cx||Cy|,

implying equality everywhere. We conclude that |G/G
0| = ord(x)ord(y).

Further, the palindrome xyx does not commute with x or y. To see that,
suppose xyx commutes with x. Then x

2
yx = xyx

2, and hence xy = yx,
contradiction. If xyx commutes with y, then xyxy = yxyx and hence xy = yx

since the group has odd order, again a contradiction. We conclude that there
exist at least three pairwise non-commuting palindromes. We now claim
that all X-palindromes have the same prime order q. Indeed, let p be an
X-palindrome not commuting with x or y. Then G = hp, xi = hp, yi and
thus

|G/G
0| = ord(x)ord(y) = ord(p)ord(y) = ord(p)ord(y),

which implies
ord(x) = ord(y) = ord(p).

To see that ord(x) is prime, take some m such that x
m 6= 1. Then x

m is
a palindromes not commuting with y and thus G = hxm

, yi. Therefore, as
before,

ord(xm) = ord(x).
If ord(x) had a divisor m greater than 1, then ord(xm) < ord(x), proving
that ord(x) is prime.

32



2.1. Civic groups

(ii) Suppose N is properly contained in G
0. Note that G is then necessarily

centerless, otherwise Z(G) ◆ G
0 (since G

0 is a minimal normal subgroup
of G) properly contains N and therefore Z(G) contains some nontrivial
palindromes, contradicting Lemma 2.1.24. Since G

0 is abelian, in particular
all the palindromes of G

0 commute, and thus every element of G
0 can be

written uniquely as zn where z 2 Cx for some palindrome x 2 G
0 and n 2 N .

It’s easy to see that these z’s form a subgroup H of Cx. Hence G
0 = HN .

Since any pair of non-commmuting palindromes will generate the whole group
G by Lemma 2.1.23, we have that G/G

0 = hyG0i where y is a palindrome not
commuting with x. Hence |G| divides |N ||H|ord(y). Recall that |G|/|N | is
the number of palindromes and

|Cx||Cy|  |G|/|N |  |H|ord(y)  |Cx||Cy|.

Thus the number of palindromes is equal to |H|ord(y) for any palindrome
y not commuting with x. As before, all such palindromes y have the same
prime order, call it q.

In both of the above cases, we find that G/G
0 is elementary abelian of order

dividing q
2 (order q2 in the former case and q in the latter). Recall also that G0 is

elementary abelian of order pr for some integer r.

If p 6= q, it follows directly from Schur’s Theorem (1.3.9), that G is the semi-direct
product of two elementary abelian groups: (Z/pZ)r and (Z/qZ)j where j 2 {1, 2},
p is the prime dividing the order of G0 and r is some integer. It is in the former
case that j = 2, but then we actually have a central series for G: {1}, Z(G), G.
Therefore G is nilpotent, and by Theorem 1.2.12 it is the direct product of its
Sylow subgroups. Hence in our case, G is abelian, and therefore civic.

Otherwise G is a p-group for some prime p. In conclusion:

Theorem 2.1.26. A minimal odd order group G having the property pw(G) > 1
is either a p-group or of the form (Z/pZ)r o (Z/qZ) for distinct primes q, p.

Corollary 2.1.27. A minimal non-civic group of odd order is either a p-group or
of the form (Z/pZ)r o (Z/qZ) for distinct primes q, p.

Proof. This follows from Theorem 2.1.26 and Lemma 2.1.22.

We end this section by giving examples of civic and non-civic groups.
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2. Palindromes and Games

Example 2.1.28. We want to show that of the five groups of order 27, four are
civic and one is not. The five groups of order 27 are (see [3, p. 179-184])

• G1 = Z/27Z;

• G2 = (Z/9Z)⇥ (Z/3Z);

• G3 = (Z/3Z)3;

• G4 = hx, y : x3 = y
9 = 1, xyx�1 = y

4i;

• G5 = hx, a, b : x3 = a
3 = b

3 = 1, ab = ba, xax
�1 = ab, xbx

�1 = bi.

The groups G1, G2 and G3 are all civic because of Lemma 2.1.6.

Next we show that G4 is civic. Note that xy = y
4
x, but yx 6= xy

4. Hence, G4 is not
{x, y}-reversible. Since every proper subgroup and quotient of G4 is abelian, this
implies that pw(G4, {x, y}) = 1. Now take some X ✓ G4 such that G4 = hXi. We
want to show that pw(G4, X) = 1. Suppose pw(G4, X) > 1. Then we may assume
G4 is X-reversible and G4 is thus a minimal odd order group of the type that was
studied on the preceding pages. Since G4 is a 3-group, it cannot be centerless and
thus N = G

0
4 where N is defined as in Lemma 2.1.16. Note that y

3 = xyx
�1
y
�1,

and thus hy3i ✓ G
0
4. Also, xy3x�1 = y

12 = y
3 so hy3iCG4. Since G

0
4 is a minimal

normal subgroup of G4, we now have hy3i = G
0
4. Every element of G4 can be

written as the product of an X-palindrome p and an element n 2 N by Lemma
2.1.16. Therefore, there exists an X-palindrome p and integer m such that

y = (y3)mp,

which implies that y
1�3m = p is an X-palindrome. This is a contradiction, since

then y
3 2 N is an X-palindrome. We conclude that pw(G4, X) = 1 and thus G4

is civic.

Finally, we show that G5 is not civic. Note that G5 = ha, xi, since b = xax
�1
a
�1.

We will show that the set of all {a, x}-palindromes in G5 is

P = {arxs
a
r : 0  r, s  2}

which is a proper subset of G5. This implies that pw(G5, {a, x}) > 1. Take some
word w in the alphabet {a, x} and suppose w is a palindrome. By “peeling off”
the leftmost and rightmost letter of w and repeating, one eventually ends up with
a word w

0 such that |w0| 2 P . Therefore, if we can show that for any p 2 P , both
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2.2. Application to the Magnus-Derek Game

apa 2 P and xpx 2 P , we are done. Obviously apa 2 P . Note that the relations
of the group G5 give

xa
r = a

r
xb

r and a
r
x = xa

r
b
�r (⇤)

(if ar 6= 1). Let p = a
r
x
s
a
r where r, s 2 {0, 1, 2}. If r = 0, then clearly xpx 2 P .

Otherwise, using (⇤) above, we obtain

xpx = xa
r
x
s
a
r
x = a

r
xb

r
x
s
xa

r
b
�r = a

r
x
s+2

a
r
b
r
b
�r = a

r
x
s+2

a
r 2 P,

and we are done.

2.2. Application to the Magnus-Derek Game

In [8], Nedev and Muthukrishnan introduced the so-called Magnus-Derek game.
It is played by two players called Magnus and Derek, on a circular table with n

labeled positions. Magnus moves a token around the table by specifying how many
positions he will move the token, while Derek gets to decide in which direction he
moves it. Magnus’s goal is to maximize the number of positions visited while
Derek’s is to minimize this number. Later, Gerbner [6] generalized the game such
that the positions are the elements of a finite group. Then Magnus chooses a group
element g and Derek decides whether to multiply the current position with g or
g
�1 from the right. In the same paper, Gerbner solved the game for abelian groups

and a few other cases. Of course, the original game is equivalent to Gerbner’s game
in Z/nZ.

Denote by f(G) the number of group elements that will be visited assuming optimal
play in a group G. For G an abelian group, Gerbner [6] showed that

f(G) =

(
|G|, if |G| is a power of 2,
|G|(1� 1/p), where p is the smallest odd prime factor dividing |G|.

.

Let � be the subgroup of G generated by the elements of G whose order is a power
of 2, and P be a maximal palindromic proper subset of G/�. Since G is abelian,
� is in fact the Sylow 2-subgroup of G. Further, G/� is abelian of odd order,
and hence civic by Lemma 2.1.6, so P will be a maximal subgroup of G/�, and
|(G/�) : P | = p where p is the smallest odd prime divisor of |G| (by Theorem
1.2.12). Thus |P | = |G|/|�|

p and the above formula for f(G) gives

f(G) =

(
|G|, if |G| is a power of 2,
|G|� |�||P |, otherwise.
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2. Palindromes and Games

We claim that this is the case for all groups, not just abelian ones. To prove that
claim, we need to show that f(G) = |G| � |P | where G is a group of odd order,
since it suffices to consider groups of odd order, as the next three lemmas show.

Lemma 2.2.1. Let G be a finite group and � ✓ G be the subgroup of G generated
by all the elements whose orders are powers of 2. Then �CG and |G/�| is odd.

Proof. First note that |G|/|�| is odd since � contains a (in fact every) Sylow
2-group of G. To see that �CG, let x 2 � and write x = t1t2 · · · tk, where each ti

has order a power of 2. Then conjugating we see

gxg
�1 = g

 
Y

ik

ti

!
g
�1 =

Y

ik

(gtig
�1),

and since conjugation does not change order of an element, each gtig
�1 has order

a power of 2.

Lemma 2.2.2. If � is generated by elements whose orders are powers of 2, then
f(�) = |�|.

Proof. Suppose the token is currently at x and t is an element of order 2k. We
will show that Magnus has a strategy to move the token from x to xt. With this,
it will follow that Magnus has a strategy to move the token to xt1t2 · · · tk for any
elements ti whose orders are powers of 2, and since such elements generate �, this
would complete the proof.

For Magnus to move the token from x to xt, he performs the following algorithm:

• Magnus chooses t
1, t2, t4, t8, . . . , t2k�1 in order until the token is at xt.

If Magnus follows this strategy, we claim that one of Derek’s responses necessarily
moves the token to xt. Otherwise Derek’s first reply must be

x 7! xt
�1 = xt

1�2

(since otherwise the token would land on xt). Similarly, the second reply must be

xt
1�2 7! (xt1�2)t�2 = xt

1�4
.

And in general, Derek’s response to t
2i must be

xt
1�2i 7! xt

1�2i+1
.

Thus, his response to t
2k�1 must be xt1�2k�1 7! xt

1�2k . But this is equal to xt since
t
2k = 1.
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2.2. Application to the Magnus-Derek Game

Lemma 2.2.3. If K CG, then f(K)f(G/K)  f(G)  |K|f(G/K).

Proof. For the lower bound, Magnus’s strategy is as follows:

(a) Each time the token arrives in a new left coset gK, Magnus chooses only
elements of K (thereby staying within that coset) until he has moved the
token to as many new positions within gK as he can.

(b) By playing as if in G/K, Magnus moves the token to a new (left) coset if
possible.

If Magnus follows this strategy, the token will visit at least f(K) elements within
each coset, and it will visit at least f(G/K) cosets.

For the upper bound, Derek can follow a strategy as if playing in G/K, and making
every decision with the singular goal that the token reaches at most f(G/K)
cosets.

The previous three lemmas show that for any group G, with � defined like in
Lemma 2.2.1, we have

f(G) = |�|f(G/�).

Therefore, it suffices to find f(G/�). Further, the order of the group G/� is always
odd. Hence we have reduced the problem to the odd order case.

Now suppose G is a group of odd order. We define the open Magnus-Derek game
as follows:

Derek first picks a set N ✓ G and tells Magnus what that set is. Derek’s goal is
to pick as large a set as possible so that he can be certain to keep the token out
of N . In this version, Magnus’s only goal is to move the token into N .

We define f̃(G) = |G| � maxN |N |, where the maximum is taken over all sets N

for which Derek can win this modified game.

Conveniently, it turns out the open Magnus-Derek game is equivalent to the
original Magnus-Derek game in finite groups.

Lemma 2.2.4. If N is a maximal set for which Derek can win the open game,
then Magnus can reach every element outside of N . Moreover, for all x and g, if
xg 2 N and xg

�1 2 N , then x 2 N as well.
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2. Palindromes and Games

Proof. Let y 2 G \ N . By the maximality of N , Derek cannot win the game if
he claims the set N [ {y}. Hence Magnus can reach some element of N [ {y},
however Derek plays. When Derek claims the set N , he will play a strategy that
prevents Magnus from reaching any element of N , so if Magnus plays the strategy
that would allow him to reach some element of N [ {y} had Derek claimed that
set, then he must eventually reach some element of that set, and that element
must be y since Derek is preventing him from reaching N .

For the second part, suppose x /2 N . Then by the first part of this lemma, Magnus
can reach x and then choose g. Then he reaches either xg or xg

�1, contradicting
the fact that both belong to N . Hence x 2 N .

Proposition 2.2.5. For any finite group G, f̃(G) = f(G).

Proof. In the original game, Derek can pick a maximal set N for which he can
win the open game without telling Magnus, and play as if playing the open game.
Thus f(G)  f̃(G).

Now we consider the original game from Magnus’s point of view. Suppose that N
is the set of elements the token hasn’t visited, at the current step. Note that if
|N | > |G|� f̃(G), then Magnus can pretend that Derek has picked the set N , and
play as in the open game to make the token reach some element of N (he can do
that, since otherwise we would have found a bigger set for which Derek can win
the open game). Eventually, the size of N will shrink to |G|� f̃(G), which means
that the token will have reached f̃(G) elements. Thus f(G) � f̃(G).

Definition 2.2.6. Let G be a group of odd order. We say that an element b 2 G

is between elements a, c 2 G if there exist x, g 2 G such that a = xg, b = x,
c = xg

�1.

It is straightforward to see that there is a unique element between any two elements.
Since G has odd order, every element is a square and indeed, b = cd, where d is
the (unique) square root of c�1

a, is the unique element between a and c. With
this terminology, Lemma 2.2.4 states that for any two elements in N , the element
between them also belongs to N . Define a map b : G ⇥ G ! G such that b(x, y)
is the element between x and y.

Lemma 2.2.7. Let G be a group of odd order and let N ✓ G be a set with the
property x, y 2 N ) b(x, y) 2 N . Then the following holds: if a 2 N and ax 2 N

then ax
k 2 N for all integers k.
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2.2. Application to the Magnus-Derek Game

Proof. Denote the square root of x by s(x) and s
k the composition of s with itself

k times. Observe that s is the inverse of the map x 7! x
2. Let x 2 N and m be

the order of x.

Consider the sequence (x2i)i2N. It is periodic since the sequence (2i mod m)i2N
is periodic; call its period p. Then the finite sequence (si(x))pi=0 is obtained by
reversing the order of the finite sequence (x2i)pi=0. To see that, note that

x
2i = s

�i(x) = s
p�i(x),

since x 7! x
2 is the inverse of the map s, as noted above.

Now, since as(x) = b(a, ax) we have that the sequence (asi(x))pi=0 is fully contained
in N . Hence the sequence (ax2i)pi=0 is contained in N . Suppose 2r is the largest
power of 2 which does not exceed m. Let t  r be an integer and observe that
ax

k 2 N for all integers k between 2t�1 and 2t — simply keep taking the “between”
elements. Hence {axk}2rk=0 ✓ N , i.e. more than half of all the powers ax

k are
contained in N . For each integer q between 1 and m+1

2 , we have

b(axq�1
, ax

q) = ax
q�1

s(x) =: axk

where k >
m+1
2 . Further, for the m+1

2 different choices of q we get m+1
2 different

values of k. We are done, since m+1
2 < 2r and hence ax

q 2 N for all these choices
of q.

Corollary 2.2.8. Let N and G be as in Lemma 2.2.7. Then there exists a 2 G

such that N = aP where P is a palindromic subset of G.

Proof. Fix some a 2 N . We want to show that the set a�1
N is palindromic in G.

Note that 1 2 a
�1
N and take some x, y 2 a

�1
N . By Lemma 2.2.7, the fact that

a, ay 2 N implies that
ax(x�1

y
�1) = ay

�1 2 N.

Since ax, ax(x�1
y
�1) 2 N , Lemma 2.2.7 again implies that

axyx = ax(x�1
y
�1)�1 2 N,

i.e. xyx 2 a
�1
N .

To prove that that our claim (that f(G) = |G| � |P | where P is a maximal
proper palindromic subset of G) is true, it now only remains to show that for any
palindromic subset of G, Derek can win the game if he pick a set of the same size
and win:
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2. Palindromes and Games

Proposition 2.2.9. Let P ( G be a palindromic subset of an odd order group G.
Then there exists a 2 G such that Derek can prevent the token from reaching aP .

Proof. Suppose b is the element where the token starts, and let a be some element
such that b /2 aP . First we show that b(ax, ay) = ap, where p 2 G is an
{x, y}-palindrome. Indeed, suppose n is the order of y and 2m� 1 is the order of
y
�1
x. Then (y�1

x)m is the square root of y�1
x and

b(ax, ay) = ay((ay)�1
ax)m

= ay(y�1
a
�1
ax)m

= ay(y�1
x)m

= ax y
�1
x · · · xy�1

x| {z }
m�1 factors of y�1x

= ax y
n�1

x · · · xyn�1
x| {z }

m�1 factors of yn�1x

= ap

where p = x(yn�1
x)m is clearly an {x, y}-palindrome. Therefore, aP satisfies the

property that for any x, y 2 P , b(ax, ay) 2 aP . Taking the contrapositive, we see
that if b(ax, ay) /2 aP , then ax /2 P or ay /2 P .

If the token is at g 2 G \ aP , then for any h 2 G,

g = b(gh, gh�1).

Thus, either gh /2 aP , or gh�1
/2 aP . Hence, if the token is currently at an element

g outside of aP , then whatever element h Magnus chooses, Derek can send the
token to an element outside aP .

Theorem 2.2.10. In the Magnus-Derek game, if G has odd order, then

f(G) = |G|� |P |,

where P is a maximal palindromic proper subset of G. In particular,

f(G)  |G|(1� 1/p),

where p is the smallest prime dividing |G|.

Proof. From Corollary 2.2.8 it follows that

f(G) � |G|� |P |,
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2.2. Application to the Magnus-Derek Game

and from Proposition 2.2.9 that

f(G)  |G|� |P |.

The fact that
f(G)  |G|(1� 1/p)

follows from Corollary 2.1.17, which applies since P is the set of all P -palindromes
of the subgroup hP i of G.

Note that this upper bound is reached in nilpotent groups, since subgroups are
palindromic subsets and a nilpotent group has a subgroup of any given order
dividing its order. In fact, the upper bound is reached in all groups with a subgroup
of index p where p is the smallest prime dividing the order of the group. Note
also that if G is civic, then we know that any set P like in Theorem 2.2.10 is a
subgroup. We conjecture that every group of odd order satisfies a weaker property
than being civic, namely that it has a proper subgroup at least as large as any
proper palindromic subset, but the question of whether that is true remains open.
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A. Basic Results in Group- and
Representation Theory

Here, we present some notions and results in elementary group theory, which
the reader should be familiar with. The proofs of the theorems can be found in
most algebra textbooks, for instance [3]. Also, we state the one theorem from
representation theory that is used, Maschke’s theorem.

A.1. Isomorphism Theorems

Theorem A.1.1. (The first isomorphism theorem) Let G,H be groups and ' :
G ! H a group homomorphism. Then the kernel Ker' is a normal subgroup of
G and

G/Ker' ⇠= '(G).

Theorem A.1.2. (The second isomorphism theorem) If G is a group, H a subgroup
of G and N a normal subgroup of G, then H \N is normal in H and

HN/N ⇠= H/(H \N).

In fact, there is a natural isomorphism ' : H/(H \N) ! HN/N given by

'(h(H \N)) = hN.

Theorem A.1.3. (The third isomorphism theorem) If G is a group and N,M are
normal subgroups of G such that M ✓ N , then N/M is normal in G/M and

(G/M)/(N/M) ⇠= G/N.
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A. Basic Results in Group- and Representation Theory

Theorem A.1.4. (The fourth isomorphism theorem) Let G be a group and N a
normal subgroup of N . Then there is a bijection from the set of those subgroups
A of G such that N ✓ A, to the set of subgroups of G/N . In particular, every
subgroup of G/N is of the form A/N for some subgroup A of G containing N . The
bijection A 7! A/N has the following properties: for all subgroups A,B ✓ G such
that N ✓ A and N ✓ B,

(i) A ✓ B if and only if A/N ✓ B/N ,

(ii) if A ✓ B, then |B : A| = |B/N : A/N |,

(iii) hA [Bi/N = hA/N [ B/Ni,

(iv) (A \ B)/N = (A/N) \ (B/N) and

(v) ACG if and only if A/N CG/N .

A.2. The Class Equation

Definition A.2.1. Let G be a group, A ✓ G and a 2 G. Then we define

• the centralizer of a 2 G as CG(a) = {g 2 G : ga = ag},

• the normalizer of A in G as NG(A) = {g 2 G : gA = Ag}

Note that CG(a) = NG({a}).

Definition A.2.2. Let G be a group. The conjugacy class of x 2 G is the set

x
G = {gxg�1 : g 2 G}.

In the language of group actions, we could say that the conjugacy class of x is the
orbit of x in the action of G on itself by conjugation.

The size of the conjugacy class xG is related to the centralizer of x in the following
way:
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A.3. Sylow’s Theorem

Proposition A.2.3. For all x 2 G, we have

|xG| = |G : CG(x)|

Now if x 2 Z(G), we have that gxg
�1 = x for all g 2 G and hence x

G = {x}, in
accordance with Proposition A.2.3. Moreover it is easy to see that the conjugacy
classes of G form a partition of G. Thus we have the following

Theorem A.2.4. (The class equation). Let G be a finite group and g1, . . . , gr be
representatives for each of the distinct conjugacy classes that lie outside of Z(G).
Then

|G| = |Z(G)|+
rX

i=1

|G : CG(gi)|.

A.3. Sylow’s Theorem

Definition A.3.1. Let p be a prime and P a group. Then if |P | = p
n for some

integer n, we say that P is a p-group. Now suppose G is a finite group and P a
subgroup of G which is a p-group with p not dividing the index |G : P |. Then P

is called a Sylow p-subgroup of G. The set of Sylow p-subgroups of G is denoted
Sylp(G) and we let np = |Sylp(G)|

Theorem A.3.2. (Sylow) Let G be a group of order p
↵
m where p is a prime not

dividing m.

(i) There exists a Sylow p-subgroup of G, i.e. Sylp(G) 6= ?.

(ii) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there
exists g 2 G such that Q ✓ gPg

�1. In particular, if Q is also a Sylow
p-subgroup of G, then Q = gPg

�1. Then we say that P and Q are conjugate.

(iii) The number np of Sylow p-subgroups of G is of the form 1 + kp for some
integer k. Further, np = |G : N(P )| for any Sylow p-subgroup P of G (here
N(P ) denotes the normalizer of P in G); in particular np divides m.
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A.4. FG-Modules and Maschke’s Theorem

Definition A.4.1. Let G be a group acting on a vector space V over a field F .
If the action satisfies the properties (i) and (ii), we say that V is an FG-module.
Let u, v 2 V be vectors and � 2 F a scalar.

(i) g · (�v) = �(g · v),

(ii) g · (u+ v) = g · u+ g · v.

Definition A.4.2. Let V be an FG-module and W ✓ V a subspace. If W satisfies
the property that, for all w 2 W and all g 2 G, g · w 2 W , we say that W is an
FG-submodule of G.

Theorem A.4.3. (Maschke) Let G be a finite group, F be a field such that
|G| does not divide the characteristic of F . Let V be an FG-module and U an
FG-submodule of V . Then there exists another FG-submodule W of V such that

V = U �W.

A.5. Solvable Groups

Definition A.5.1. We say that a group is solvable if there exists a subnormal
series

{1} = K0 CK1 C · · ·CKn = G

such that the quotient Ki/Ki�1 is abelian for all i.

The following major result in finite group theory was proved by Feit and Thompson
in 1963 [4].

Theorem A.5.2. (Feit-Thompson) Every group of odd order is solvable.
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