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Abstract

We explain and clarify the work of Garvan et al. [GKS90] on Dyson’s crank
of integer partitions [Dys44], proving Ramanujan’s congruences.

1 Introduction

Recall that a partition of a positive integer n is a non-increasing finite sequence λ =
(λ1, . . . , λk) such that n = λ1 + · · · + λk. For i = 1, . . . , k, λi is called a part of
the partition. The number of partitions of n is denoted p(n). A partition may be
represented by a so-called Young diagram, i.e. an array of cells such that the i-th
line has λi cells for i = 1, . . . , k (see Figure 1). It is clear that there is a one-to-one

Figure 1: Young diagram of the partition λ = (5, 4, 2).

correspondence between partitions and Young-diagrams. This justifies the definition
of the conjugate partition:

Let λ be a partition of n. Then we define the conjugate partition λ′ such that it
has λ1 parts and λ′i is the number of cells in the i-th column of the Young diagram
of λ. In other words, λ′ is the Young diagram obtained by transposing (i.e. reflecting
about the main diagonal) the Young diagram λ.

Theorem 1.1. (Ramanujan’s congruences). For n ∈ N,

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)
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Theorem 1.1 was first proved by Ramanujan in [Ram21], and has since been proved
in many different ways, see for example [HW08].

In [Dys44], Dyson noted that all existing proofs of Ramanujan’s congruences relied
on generating function identities which gave no idea of how to split the partitions of
5n + 4 (resp. 7n + 5 and 11n + 6) into 5 (resp. 7 and 11) equinumerous classes. He
proceeds to define the rank of a partition λ = (λ1, . . . , λk) as rank(λ) = λ1 − k. By
definition, rank(λ) = − rank(λ′). Let P denote the set of all partitions, N(m,n) the
number of partitions of n of rank m and N(m, t, n) the number of partitions of n of
rank congruent to m modulo t. Since the map P → P , λ 7→ λ′ is bijective (it is its own
inverse), we obtain that N(m,n) = N(−m,n) and N(m, t, n) = N(t−m, t, n). Dyson
conjectured that the rank would split the partitions of 5n+ 4 and 7n+ 5 into 5 and 7
equinumerous groups respectively. More precisely, that

N(m, 5, 5n+ 4) =
p(5n+ 4)

5

for m = 0, 1, 2, 3, 4 and

N(m, 7, 7n+ 5) =
p(7n+ 5)

7

for m = 0, 1, 2, 3, 4, 5, 6. He noted that this strategy wouldn’t work for partitions of
11n + 6, but nevertheless suggested that something similar might work. He defined
the term crank as a statistic crank(λ) of a partition λ, such that if M(m, t, n) denotes
the number of partitions λ of n such that crank(λ) ≡ m (mod t), the following should
hold:

M(m, t, n) = M(t−m, t, n) (1)

and

M(m, t, tn+ r) =
p(tn+ r)

t
(2)

for m ∈ {0, . . . , t−1} where (t, r) ∈ {(5, 4), (7, 5), (11, 6)}. Atkin and Swinnerton-Dyer
proved Dyson’s conjecture about the rank for partitions of 5n+4 and 7n+5 in [AS54].
Cranks were then found in [AG88; Gar88]. Later, Garvan, Kim and Stanton [GKS90]
gave a single strategy to find cranks for 5n+ 4, 7n+ 5 and 11n+ 6, along with explicit
bijections between the crank classes. The aim of this thesis is to explain and clarify
their work.

In Section 2, the prerequisite results and definitions from partition theory are given.
In Section 3, we define two bijections relating partitions and vectors in Zt. These are
crucial ingredients in the definition of the cranks given in Section 4.
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2 Background: hooks and t-cores

Definition 2.1. Let λ = (λ1, . . . , λn) be a partition and λ′ = (λ′1, . . . , λ
′
m) its conju-

gate.

1. The (i, j)-cell of λ is the cell in row i and column j of the Young-diagram of λ.

Figure 2: (2,3)-cell of the partition λ = (5, 4, 2).

2. The (i, j)-hook of λ is the subset consisting of the (i, r)- and (s, j)-cells of λ with
r ≥ j and s ≥ i. The (i, j)-hook of λ is denoted Hλ

ij.

Figure 3: (1,2)-hook of the partition λ = (6, 4, 4, 2, 1).

3. The number hλij = λi − i+ λ′j − j + 1 of cells in Hλ
ij is called the length of Hλ

ij.

4. The (i, j)-cell is said to be on the rim it is the last in a north-west to south-east
diagonal (i.e. if the (i+ 1, j + 1)-cell does not exist).

5. The set of (r, s)-cells on the rim of λ such that i ≤ r ≤ λi and j ≤ s ≤ λ′j is
denoted Rλ

ij and called the associated part of the rim or the rim-(i, j)-hook of λ.

Figure 4: Rim-(1,2)-hook of the partition λ = (6, 4, 4, 2, 1).
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Remark 2.2. By picking a hook of λ and removing the associated part of the rim, it
is easy to see that one obtains a new Young-diagram. It is also clear that the number
of cells in Rλ

ij is the same as in Hλ
ij.

Definition 2.3. Let λ be a partition. The (i, j)-hook of λ is called a t-hook if hλij = t
and the associated part of the rim is called a rim-t-hook. The partition λ is said to
be a t-core if it has no hooks of length a multiple of t, or equivalently no rim hooks of
length a multiple of t.

Theorem 2.4. ([JK81, Theorem 2.7.16]). Pick a number t and a partition λ. By
subsequent removal of rim-t-hooks from λ, one eventually obtains a t-core partition λ̃,
independent of the sequence of removals. This unique partition λ̃ is called the t-core of
λ.

Remark 2.5. Since hook lengths are preserved by conjugation, Theorem 2.4 shows
that the t-core of the conjugate of a partition is the conjugate of the t-core of the
original partition.

We illustrate Theorem 2.4 in Figure 5 where the 3-core of λ = (6, 4, 4, 2, 1) is found:
λ̃ = (3, 1, 1).

→ → → →

Figure 5: Sequence of rim-3-hook removals of the partition λ = (6, 4, 4, 2, 1).

Definition 2.6. The Durfee square of a partition λ is largest square fitting inside the
Young-diagram of λ with one vertex at (1, 1). The size of the Durfee square is the
greatest integer s such that λ has at least s parts of value at least s.

Figure 6: Durfee square of size 3 in the partition λ = (6, 4, 4, 2, 1).
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3 Two bijections

If λ is a partition, we denote the number which λ partitions by |λ|. We note by P the
set of all partitions and Pt−core the subset of all partitions which are t-cores. Recall
that

p(n) := #{λ ∈ P : |λ| = n}

and
at(n) := #{λ ∈ Pt−core : |λ| = n}.

Finally, we shall use the notation

(a; q)k :=
k−1∏
i=0

(1− aqi)

(allowing k =∞). Note that

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Theorem 3.1. ([GKS90, Bijections 1 and 2]). There is a bijection

φ1 : P → Pt−core × P × · · · × P, λ 7→ (λ̃, λ0, . . . , λt−1),

such that

|λ| = |λ̃|+ t
t−1∑
i=0

|λi|

(it should be noted that the λi are not the parts of λ, rather they are themselves parti-
tions of smaller numbers). The generating function identity given by φ1 is

∞∑
n=0

p(n)qn =
1

(qt; qt)t∞

∞∑
n=0

at(n)qn.

There is another bijection

φ2 : Pt−core → {~n = (n0, . . . , nt−1) ∈ Zt : n0 + · · ·+ nt−1 = 0}, λ̃ 7→ ~n,

where
|λ̃| = t ‖~n‖2 /2 +~b~n, ~b = (0, 1, . . . , t− 1).

The generating function identity given by φ2 is

∞∑
n=0

at(n)qn =
∑
~n·~1=0
~n∈Zt

q
t
2
‖~n‖2+~b·~n.
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Proof. We begin by φ2. We let λ̃ be a t-core and we define φ2(λ̃) = ~n = (n0, . . . , nt−1)
as follows. We label the (i, j)-cell of λ̃ with j−i mod t. Then we add an infinite column
to the left of λ̃ (the 0-th column) and label its cells in the same way. This diagram
is called the extended t-residue diagram. A cell of the extended t-residue diagram is
called exposed if it is at the (right) end of a row. For r ∈ Z we define region r of the
extended t-residue diagram to be the set of cells such that

r(t− 1) ≤ j − i < tr

For i = 0, . . . t − 1 we define ni as the maximum number of a region containing an
exposed cell labelled i. This number is well defined since column 0 contains infinitely
many exposed cells. As an example, consider λ̃ = (4, 2). Then n0 = 2, n1 = −1 and
n2 = −1 (see Figure 7, where region -1 of the extended 3-residue diagram is coloured
white, region 0 in red, region 1 in green and region 2 in blue).

2 0 1 2 0

1 2 0

0

2

1

Figure 7: Extended 3-residue diagram of the 3-core λ̃ = (4, 2).

Note that by going down the rim (i.e. to the “south-west” or “down-left”), in each
step one is either reducing j by 1 (taking a step to the left) or increasing i by 1 (taking
a step down), in either case one is reducing j − i by 1. Therefore, for all i, if region r
has a cell labelled i on the rim, then all regions < r have a cell labelled i on the rim.

Now let’s prove that if i is exposed in region r, then the cell labelled i on the rim in
region r− 1 is exposed. First note that if the cell labelled i in region r− 1 is in column
0, then it is exposed (all cells on the rim in column 0 are exposed). Now suppose our
cell is not in column 0, i.e. is in the original partition. If it is not exposed, then there
is a cell to the right of it, labelled i + 1 mod t, which we call cell x. Since the cell
labelled i is on the rim, there is no cell just below cell x. But then the part of the rim
going from cell x up (“north-east”) to the cell in region r labelled i is a rim-t-hook,
contradicting the fact that λ̃ is a t-core. For later use, we note that if λ̃ is not a t-core,
then for some r there is an exposed cell labelled i in region r and s < r such that
i is not exposed in region s. Indeed, take a rim-t-hook, and let i be the label on its
north-eastermost cell, which we suppose to be in region r. Then by the argument just
above, its south-westernmost cell (supposed to be in region s < r) will be labelled i+1.
The cell labelled i on the rim in region s will then be to the left of the cell labelled
i + 1, and thus not exposed (the other option is that it is just below the cell labelled
i + 1, but that is not possible since i + 1 is the foot (south-westernmost cell) of a rim
hook).
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We have just shown that there is a cell labelled i in every region numbered ≤ ni.
Therefore the number of exposed cells in regions with positive number is the sum of
the positive ni’s. The number of exposed cells in positive regions is also the number
of rows which intersect a positive region. For a row to intersect a positive region, its
length must be at least its number. Therefore, the number of exposed cells in positive
regions is exactly the size of the Durfee square of λ̃. To show that n0 + · · ·+ nt−1 = 0,
it suffices to show that if λ̃′ is the conjugate of λ̃, then

φ2(λ̃
′) = (−nt−1,−nt−2, . . . ,−n0), (3)

since the Durfee square is an invariant by conjugation, and that along with Equation
(3) means that the negative sum of the negative ni’s is equal to the sum of the positive
ni’s. Indeed, Equation (3) holds for λ̃′ = (2, 2, 1, 1), see Figure 8 (region −2 is coloured
yellow).

2 0 1

1 2 0

0 1

2 0

1

0

2

Figure 8: Extended 3-residue diagram of λ̃′ = (2, 2, 1, 1).

In general, consider an exposed cell in region r of λ̃ labelled i, such that there is a
cell labelled i+ 1 above it. Suppose its coordinates are (k,m). Since

t(r − 1) ≤ k − 1−m < tr,

we have
−tr ≤ m− k < t(1− r),

and thus the corresponding cell in λ̃′ will be in region 1 − r, it will be on the rim,
labelled t− i− 1 and not exposed (since there it is not the last cell in its column in λ̃,
it is not the last cell in its row in λ̃′). Conversely, if a cell on the rim of λ̃′ is in region
1 − r, labelled t − i − 1 and not exposed, then the cell to its right corresponds to an
exposed cell labelled i in region r of λ̃. We conclude that equation (3) holds.

To show that φ2 is bijective, we give its inverse. Let ~n = (n0, . . . , nt−1) be given
such that n0 + · · · + nt−1 = 0. Consider the lattice of all cells (i, j) with i, j ∈ Z,
where the (i, j)-cell is labelled j − i mod t. Define the regions as before. Then in each
row, for i = 0, . . . , t − 1 there is exactly one cell labelled i in each region. Now for
each integer m starting from the largest value of the ni’s down to the smallest, order
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the indices of the ni’s such that ni ≥ m in decreasing order. Define ak to be the k-th
term of the sequence defined in this way and let m(ak) be the value of m when ak
was defined. Then define λi to be the column number of the cell labelled ak in region
m(ak) in row k. Then the positive λk’s are the parts of λ̃ := φ−12 (~n). To illustrate
this construction, consider Figure 9, where we have bolded the label of the exposed
cell in each row of the resulting partition for t = 3 and ~n = (−1, 2,−1) The resulting

2 0 1 2 0 1 2 · · ·
1 2 0 1 2 0 1 · · ·
0 1 2 0 1 2 0 · · ·
2 0 1 2 0 1 2 · · ·
1 2 0 1 2 0 1 · · ·
0 1 2 0 1 2 0 · · ·
2 0 1 2 0 1 2 · · ·

Figure 9: Lattice with regions −2 to 2 colored.

partition in the example of Figure 9 is φ−12 (~n) = (5, 3, 1). The sequence (ak) in this
case is 1, 1, 1, 2, 1, 0, 2, 1, 0, . . . .

We noted before that a partition is in fact a t-core if and only if the condition that
the existence of a cell labelled i in region r implies the existence of a cell labelled i in
region r− 1 holds. Therefore, by construction, if φ−12 is well defined, then the resulting
partition is a t-core. For it to be well defined, we need to show that the construction
of the sequence ak makes us end up in column number 0, i.e. at the point where
ak = t − 1, ak−1 = t − 2, . . . , ak+t−1 = 0, then λk = 0. Let rmin = min{n0, . . . , nt−1}.
Then for each i, there are ni− rmin + 1 rows with a cell labelled i at the end, up to and
including the first occurence of ak = t−1, ak−1 = t−2, . . . , ak+t−1 = 0 in the sequence.
Therefore, there are in total

t−1∑
i=0

(ni − rmin + 1) = −t(rmin − 1)

rows (if we stop counting after the first occurence of ak = t−1, ak−1 = t−2, . . . , ak+t−1 =
0). Now, for all i ∈ {0, . . . , t− 1} the cells labelled i in region rmin and rows −t(rmin−
1)− i are in the same column j such that

t(rmin − 1) ≤ j + t(rmin − 1) + i < trmin

Plugging in i = 0, the former inequality gives 0 ≤ j and plugging in i = t − 1, the
latter gives j < 1. We conclude that j = 0, and thus that φ−12 is well defined.

Now we prove that if φ2(λ̃) = ~n, then |λ̃| = t ‖~n‖2 /2 +~b ·~n. First we show that the
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number of cells strictly to the right of the main diagonal of the Young diagram of λ̃ is∑
ni>0

(
ini + t

(
ni
2

))
.

Indeed, let a postive ni be given. Then there are ni rows which have an exposed cell
labelled i to the right of the main diagonal. In the first such row, to the right of the
main diagonal, there are ni− 1 blocks of t cells labelled 1, 2, . . . , t− 1, 0 (the first block
in region 1, the second in region 2 etc. up to region ni − 1), followed by the i cells
labelled: 1, 2, . . . , i. In general, in the m-th such row, to the right of the main diagonal
there are ni−m blocks of t cells labelled 1, 2, . . . , t−1, 0, followed by the i cells labelled:
1, 2, . . . , i. Therefore the number of cells to the right of the main diagonal in the rows
which end with an exposed cell labelled i is

ni∑
m=1

(t(ni −m) + i) = ini +

ni∑
m=1

t(ni −m) = ini + t

(
ni
2

)
,

yielding the desired result. By applying the same argument on λ̃′ one obtains that the
number of cells to the left of the main diagonal of the Young diagram of λ̃ is

−
∑
nj<0

(
(t− 1− j)nj − t

(
−nj

2

))
.

We have already seen that the number of cells on the main diagonal is∑
ni>0

ni.

Therefore, since the negative sum of the negative nj’s is equal to the sum of the postitve
ni’s,

|λ̃| =
∑
ni>0

(
ini + t

(
ni
2

))
−
∑
nj<0

(
(t− 1− j)nj − t

(
−nj

2

))
+
∑
ni>0

ni

=
∑
ni

ini +−(t− 1)
∑
nj<0

nj +
∑
ni>0

ni +
t

2

∑
ni>0

ni(ni − 1) +
t

2

∑
nj<0

nj(ni + 1)

= ~b · ~n+
t

2

∑
ni>0

ni +
t

2

∑
ni>0

ni(ni − 1)− t

2

∑
nj<0

nj +
t

2

∑
nj<0

nj(nj + 1)

= ~b · ~n+
t

2

∑
ni

n2
i = ~b · ~n+

t

2
‖~n‖2 .

Now we give φ1. Let λ be a partition, and w0, . . . , wt−1 be t biinfinite words in the
letters N and E, defined such that for j ∈ Z, the j-th letter of wi is E if the diagonal
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of i’s in region j intersects the extended t-residue diagram of λ in an exposed cell, and
otherwise it is N . Note that if the k-th letter of wi is N and there is an E in position
j > k, the diagonal of i’s in region k intersects the rim of λ in a cell labelled i which
is not exposed. In that case we call this cell the cell corresponding to N in position
k. The cell corresponding to E in position j is of course the exposed cell in region j
labelled i.

Now λ is a t-core if and only if each wi is an infinite sequence of E’s followed by
an infinite sequence of N ’s. In that case, define λ̃ = λ and λi = ∅ for i = 0, . . . , t− 1.
If λ is not a t-core, pick a wi. Suppose the rightmost E is in position j and that the
rightmost N to the left of the rightmost E is in position k < j. The cell corresponding
to N in position k is on the rim of λ but not exposed. Therefore there is a cell to its
right labelled i+ 1 which is the last in its column. The rim hook going from that cell
to the cell corresponding to E in position k + 1 is of length t. Remove it, and change
wi accordingly (the result is switching the N in position k and the E in position k+1).
Repeat until the block of E’s from position k+ 1 to j has been shifted one step to the
left. Place a part of size j − k in λi. Do this until not possible anymore; by Theorem
2.4 we end up with the t-core λ̃ of λ. Every time a new part is placed in λi in this
process, t(j − k) blocks are removed from λ, proving the identity

|λ| = |λ̃|+ t
t−1∑
i=0

|λi|.

We illustrate the process on λ = (6, 4, 4, 2, 1). Its extended 3-residue diagram is shown
in Figure 10.

2 0 1 2 0 1 2

1 2 0 1 2

0 1 2 0 1

2 0 1

1 2

0

2

1

Figure 10: Extended 3-residue diagram of λ′ = (6, 4, 4, 2, 1).

We show positions −2 to 2 of the words w0, w1, w2:

w0 = . . . EENNN . . . w1 = . . . ENEEN . . . w2 = . . . EENEE . . .

In all the words, the letters in positions ≥ 3 are N and those in positions ≤ −3 are E.
No shifting occurs in w0; therefore λ0 = ∅. The shifting of letters in w1 corresponds
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to removing the red rim-3-hook followed by the green one in Figure 11 (note that the
green one doesn’t become a rim hook until the red one is removed). The cell with
the bold label corresponds to the N in position −1 and the cells with the italic labels
correspond to the E’s in position 0 and 1.

2 0 1 2 0 1 2

1 2 0 1 2

0 1 2 0 1

2 0 1

1 2

0

2

1

Figure 11: Removal of rim hooks corresponding to w1 for λ′ = (6, 4, 4, 2, 1).

A part of size 1 − (−1) = 2 is then added to λ1. As a result w1 is of the desired
final form and thus λ1 = (2). Figure 12 shows the removal of rim hooks corresponding
to w2 in the same way.

2 0 1 2 0 1 2

1 2 0 1 2

0 1

2

1

0

2

1

Figure 12: Removal of rim hooks corresponding to w2 for λ′ = (6, 4, 4, 2, 1).

We conclude that λ2 = (2) and

φ1(λ) = ((3, 1, 1),∅, (2), (2)).

For a proof that φ1 is bijective, see [JK81, Theorem 2.7.17].

The two generating function identities in Theorem 3.1 yield Equation (4)
∞∑
n=0

p(n)qn =
1

(qt; qt)t∞

∑
~n·~1=0
~n∈Zt

q
t
2
‖~n‖2+~b·~n (4)
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4 Cranks

Since each term of the left factor of

1

(qt; qt)t∞

∑
~n·~1=0
~n∈Zt

q
t
2
‖~n‖2+~b·~n

has exponent divisible by t, when it is expanded, the residue mod t of each exponent
will be determined by the right factor. Furthermore, since ~n ·~1 = 0, the number of odd
ni’s is even, and thus the number of odd n2

i ’s is even, so ‖~n‖2 is even and hence

t

2
‖~n‖2 ≡ 0 mod t

Therefore, Equation 4 yields

∞∑
n=0

p(tn+ r)qtn+r =
1

(qt; qt)t∞

∑
~n·~b≡r mod t

~n·~1=0
~n∈Zt

q
t
2
‖~n‖2+~b·~n (5)

The exponent
t

2
‖~n‖2 +~b · ~n

is a degree 2 polynomial of t variables n0, . . . , nt−1. By a change of variables, we will
transform it into a quadratic form, i.e. a homogenous polynomial of degree 2.

4.1 The case 5n+ 4

Consider the 5 partitions of 4,

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

They are all 5-cores and their extended 5-residue diagrams are shown in Figure 13 with
region −1 coloured white, region 0 red and region 1 green.

We see that

~v0 := φ2((1, 1, 1, 1)) = (1,−1, 0, 0, 0)

~v1 := φ2((2, 1, 1)) = (0, 1,−1, 0, 0)

~v2 := φ2((3, 1)) = (0, 0, 1,−1, 0)

~v3 := φ2((4)) = (0, 0, 0, 1,−1)

~v4 := φ2((2, 2)) = (1, 1, 0,−1,−1)

Obviously, ~v0, . . . , ~v3 are linearly independent over R. Since ~vi·~1 = 0 for all i, this means
that ~v0, . . . , ~v4 span the four-dimensional subspace {1}⊥ of R5. Hence, for any ~n ∈ Z5

such that ~n ·~1 = 0 there exists ~α = (α0, . . . , α4) ∈ R5 such that ~n = α0~v0 + · · ·+ α4~v4.
In fact, in that case ~α can be chosen in Z5: Since ~v4 = ~v0+2~v1+2~v2+~v3, we can choose
α4 = 0. Then α0 = n0 ∈ Z. Thus α1 = α0 + n1 ∈ Z, α2 = α1 + n2 ∈ Z, α3 = −n4 ∈ Z
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4 0 1 2 3

3

2

1

0

4

4 0 1 2

3 4

2

1

0

4

3

4 0 1

3 4 0

2

1

0

4

3

4 0 1

3 4

2 3

1

0

4

3

2

4 0

3 4

2 3

1 2

0

4

3

2

1

Figure 13: Extended 5-residue diagram of partitions of 4.

Lemma 4.1. A vector ~n ∈ Z5 satisfies ~n · ~1 = 0 and ~b · ~n ≡ 4 mod 5 if, and only if,
~n = α0~v0 + · · · + α4~v4 for some ~α ∈ Z5 such that ~α · ~1 = 1. Further, such an ~α is
unique.

Proof. Indeed, let ~n ∈ Z5 such that ~n · ~1 = 0 and ~b · ~n ≡ 4 mod 5. Write ~n =
α0~v0 + · · ·+ α4~v4 with ~α ∈ Z5. First we show that ~α ·~1 ≡ 1 mod 5. Since

−α0 − α1 − α2 − α3 − 6α4 =
4∑
i=0

αi(~b · ~vi) = ~b · ~n ≡ 4 mod 5

and
~b · ~n+ ~α ·~1 = −5α4 ≡ 0 mod 5,

we conclude that ~α · ~1 ≡ 1 mod 5. Let ~β = (1, 2, 2, 1,−1) and note that ~β · ~1 = 5.

Let k ∈ Z such that ~α · ~1 = 5k + 1 and replace ~α by ~α − k~β. This does not change ~n
because ~v4 = ~v0 + 2~v1 + 2~v2 + ~v3, and we are done.

Conversely, suppose ~n = α0~v0 + · · · + α4~v4 for some ~α ∈ Z5 such that ~α · ~1 = 1.
Then since ~vi ·~1 = 0 for all i, we have ~n ·~1 = 0. Further,

~b · ~n =
4∑
i=0

αi(~b · ~vi) = −α0 − α1 − α2 − α3 − 6α4 = −~α ·~1− 5α4 ≡ 4 mod 5.

Furthermore, having picked ~α ·~1 = 1 and not 5k + 1 for any other value of k ∈ Z, this
α is unique, an each such ~α clearly gives a unique ~n

Now given ~n, let ~α = (α0, . . . , α4) be as in Lemma 4.1. Then

~n = (α0 + α4,−α0 + α1 + α4,−α1 + α2,−α2 + α3 − α4,−α3 − α4)
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and thus

‖~n‖2 = (α0 + α4)
2 + (−α0 + α1 + α4)

2 + (−α1 + α2)
2 + (−α2 + α3 − α4)

2 + (−α3 − α4)
2

= 2α2
0 + 2α2

1 + 2α2
2 + 2α2

3 + 4α2
4 − 2α0α1 + 2α1α4 − 2α1α2 − 2α2α3 + 2α2α4

Since
~b · ~n = −α0 − α1 − α2 − α3 − 6α4 = −5α4 − 1,

we obtain

5

2
‖~n‖2 +~b · ~n = 5 ‖~α‖2 + 5α2

4 − 5(α0α1 + α1α2 + α2α3) + 5α1α4 + 5α2α4 − 5α4 − 1

= 5 ‖~α‖2 − 5(α0α1 + α1α2 + α2α3) + 5α4(α1 + α2 + α4 − 1)− 1

= 5 ‖~α‖2 − 5(α0α1 + α1α2 + α2α3) + 5α4(−α0 − α3)− 1

= 5 ‖~α‖2 − 5

(
4∑
i=0

αiαi+1

)
− 1

where the indices in the sum are taken mod 5. Define

Q(~α) = ‖~α‖2 −
4∑
i=0

αiαi+1.

Note that by the above, Equation (5) for (t, r) = (5, 4) becomes

∞∑
n=0

p(5n+ 4)q5n+4 =
1

(q5; q5)5∞

∑
~α·~1=1
~α∈Z5

q5Q(~α)−1 (6)

and by multiplication by q followed by the change of variables q ↔ q5 in Equation (6)
we obtain:

∞∑
n=0

p(5n+ 4)qn+1 =
1

(q; q)5∞

∑
~α·~1=1
~α∈Z5

qQ(~α). (7)

By a similar manipulation of the identity

∞∑
n=0

p(5n+ 4)q5n+4 =
1

(q5; q5)5∞

∞∑
n=0

a5(5n+ 4)q5n+4

one finds

∞∑
n=0

a5(5n+ 4)qn+1 =
∑
~α·~1=1
~α∈Z5

qQ(~α). (8)
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Now Q(~α) is a quadratic form in the variables (α0, . . . , α4). Its automorphism group
(i.e. group G of permutations σ of its coordinates such that Q(σ(~α)) = Q(~α)) is the
dihedral group D5. Indeed, it contains the permutations

r := (α0 α1 α2 α3 α4)

and
s = (α1 α4)(α2 α3).

We have that r is of order 5 and s of order 2. Further, srs−1 = r−1. Thus the subgroup
generated by r and s is isomorphic to D5 and hence D5 ⊆ G. This means that G
contains all the 5-cycles and all the double transpositions. We want to show that
G = D5. In fact we can prove the more general Theorem 4.2:

Theorem 4.2. For t an odd prime, the automorphism group of the quadratic form

Q(~α) = ‖~α‖2 −
t−1∑
i=0

αiαi+1

(where the indices in the sum are taken mod t) is isomorphic to the dihedral group Dt.

Proof. Suppose τ is a permutation on {α0, . . . , αt−1} with σ the permutation it induces
on the indices (i.e. σ(i) is defined such that τ(αi) = ασ(i)), such that Q(~α) = Q(τ(~α)),
or equivalently,

Q(α0, . . . , αt−1) = Q(ασ(0), . . . , ασ(t−1)).

Then
t−1∑
i=0

αiαi+1 =
t−1∑
i=0

ασ(i)ασ(i+1).

Since this holds for all ~α, σ(i + 1) = σ(i) ± 1 for all i. Suppose σ has a fixed point.
Without loss of generality, let that fixed point be 0. Then σ(1) = 1 or σ(1) = −1 = t−1.
If σ(1) = 1, then σ(2) = 2 or 0, but since σ(0) = 0 we must have σ(2) = 2. Going
on like this we quickly see that σ(i) = i for all i. If σ(1) = t − 1, then σ(t − 1) = 1,
since σ(1) = σ(0)± 1 = ±1, and it can’t be −1 = t− 1 = σ(1), so it must be 1. Now
σ(2) = σ(1)±1 ∈ {t−2, 0}. Since σ(0) = 0, we can’t have σ(2) = 0, thus σ(2) = t−2.
Similarly, σ(t−2) = 2, and in general σ(i) = σ(t− i) and σ(t− i) = i for i = 1, . . . , t−1

2
.

Thus σ is a t−1
2

-fold transposition

σ = (1 t− 1) · · ·
(
t− 1

2

t+ 1

2

)
which is an element of Dt.

Now we only need to show that if σ has no fixed points, then it is a power of the
t-cycle

(0 1 · · · t− 1).
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We have σ(1) = σ(0)± 1. Suppose σ(1) = σ(0) + 1. Then σ(2) = σ(1)± 1 = σ(0) + 2
or σ(0). It can’t be σ(0), thus σ(2) = σ(1) + 1. Similarly, for all i,

σ(i) = σ(i− 1) + 1 = · · · = σ(0) + i.

Thus σ(σ(0)) = 2σ(0), and in general, σn(0) = nσ(0) where the exponent n denotes
n-fold composition (everything is taken mod p). Since σ(0) 6= 0 and t is prime, Z/tZ =
〈σ(0)〉 and thus

σ = (0 σ(0) σ(σ(0)) · · · σt−1(0)) = (0 1 · · · t− 1)σ(0).

A similar argument works if σ(1) = σ(0)− 1.
We conclude that the automorphism group is contained in the group〈

(0 1 · · · t− 1), (1 t− 1) · · ·
(
t− 1

2

t+ 1

2

)〉
∼= Dt,

and to show the other inclusion, the argument for the case t = 5 generalizes easily.

Returning to the case t = 5, let λ be a partition with φ1(λ) = (λ̃, λ0, . . . , λ4) for
t = 5. Denote φ(λ) = (α(λ̃), λ0, . . . , λ4) where α(λ̃) is the vector ~α calculated from
~n = φ2(λ̃) as above. Then φ is a bijection from the set of partitions of 5n+ 4 onto its

image. Define crank′(λ) = ~b · α(λ̃). It has the property of incresing by 1 mod 5 every
time the coordinates of α(λ̃) are cyclically permuted: Indeed, since

~b · (α0, . . . , α4) = 0 · α0 + 1 · α1 + 2 · α2 + 3 · α3 + 4 · α4,

permuting the coordinates once cyclically yields

0 · α4 + 1 · α0 + 2 · α1 + 3 · α2 + 4 · α3.

The difference is

α0 + α1 + α2 + α3 − 4α4 = ~α ·~1− 5α4 ≡ 1 mod 5

Since the automorphism group of Q(~α) is D5, permuting the coordinates of α(λ̃)
via the 5-cycle (0 1 2 3 4) doesn’t change the number which λ partitions, i.e.

5Q(α(λ̃))− 1 + 5
4∑
i=0

|λi| = 5n+ 4

The operation of permuting the coordinates cyclically has no fixed point ~α with ~α ·
~1 = 1, since a fixed point would have all coordinates equal and therefore all coordinates
equal to 1/5, contradicting the fact that ~α ∈ Z5.

It is now clear that the 5-cycle σ = (α0 α1 α2 α3 α4) acts on the partitions of 5n+4
with no fixed points:

σ · λ = (σ(α(λ̃)), λ0, . . . , λ4)
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Where α(λ̃) and λi are defined as before by the bijections φ1 and φ2, and if α(λ̃) =
(α0, α1, α2, α3, α4), then σ(α(λ̃)) = (α4, α0, α1, α2, α3). Each of its orbits is of cardinal-
ity 5 and thus there are p(5n+4)/5 orbits, proving the first of Ramanujan’s congruences
(Theorem 1.1).

Since crank′(λ) increases by 1 mod 5 by each action of the 5-cycle, we have explicit
bijections (given by the 5-cycle) between the residue classes of the partitions of 5n+ 4.

We still need to modify crank′(λ), for it to satisfy both Dyson’s properties of a
crank. We need the condition given in Equation (1), and for that it suffices to make
the crank switch signs when conjugating. We give a crank in terms of ~n in Theorem
4.3.

Theorem 4.3. A crank for partitions λ of 5n+ 4 is given by the following algorithm.

(1) Find the 5-core λ̃ of λ by the bijection φ1.

(2) Find φ2(λ̃) = ~n.

(3) Let crank(λ) = 4n0 + n1 + n3 + 4n4 mod 5.

Proof. We have

~n = (α0 + α4,−α0 + α1 + α4,−α1 + α2,−α2 + α3 − α4,−α3 − α4)

yielding the system of equations

n0 = α0 + α4

n1 = −α0 + α1 + α4

n2 = −α1 + α2

n3 = −α2 + α3 − α4

n4 = −α3 − α4

Thus, modulo 5 we have the following

4n0 + n1 + n3 + 4n4 = 4(α0 + α4)− α0 + α1 + α4 − α2 + α3 − α4 − 4(α3 + α4)

= 3α0 + α1 − α2 − 3α3

= 3~α ·~1 + 3α1 + α2 + 4α3 + 2α4

= 3 + 3~b · ~α

Since the map Z/5Z → Z/5Z, x 7→ 3 + 3x is bijective (its inverse is x 7→ 4 + 2x) and

since ~b · ~α splits the partitions into 5 equinumerous classes, so does crank(λ).
Since φ2(λ

′) = (−nt−1, . . . ,−n0) (cf. Remark 2.5), we have crank(λ′) = − crank(λ),
and we conclude that crank(λ) is indeed a crank.
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4.2 The cases 7n+ 5 and 11n+ 6

We now seek to make the analogous construction for partitions of 7n+ 5 and 11n+ 6.
For the seven partitions of 5 (all of which are 7-cores), we have

~v0 := φ2((5)) = (0, 0, 0, 0, 1, 0,−1)

~v1 := φ2((4, 1)) = (0, 0, 0, 1, 0,−1, 0)

~v2 := φ2((3, 2)) = (1, 0, 1, 0, 0,−1,−1)

~v3 := φ2((3, 1, 1)) = (0, 0, 1, 0,−1, 0, 0)

~v4 := φ2((2, 2, 1)) = (1, 1, 0, 0,−1, 0,−1)

~v5 := φ2((2, 1, 1, 1)) = (0, 1, 0,−1, 0, 0, 0)

~v6 := φ2((1, 1, 1, 1, 1)) = (1, 0,−1, 0, 0, 0, 0)

The vectors ~v0, ~v1, ~v2, ~v3, ~v5, ~v6 are easily seen to be linearly independent. Thus the
vectors ~vi span the 6 dimensional space {1}⊥. We want to prove an analogue of Lemma
4.1:

Lemma 4.4. A vector ~n ∈ Z7 satisfies ~n · ~1 = 0 and ~b · ~n ≡ 5 mod 7 if, and only if,
~n = α0~v0 + · · · + α6~v6 for some ~α ∈ Z7 such that ~α · ~1 = 1. Further, such an ~α is
unique.

Proof. Suppose first that ~n ∈ Z7 satisfies ~n ·~1 = 0 and ~b · ~n ≡ 5 mod 7. We know that
there exists ~α ∈ R7 such that ~n = α0~v0 + · · ·+ α6~v6. In fact, such an ~α belongs to Z7:
Since

~v4 = 2~v0 + ~v1 − ~v2 + 3~v3 + ~v5 + 2~v6

we can choose α4 = 0. Then as a column vector,

~n =



n0

n1

n2

n3

n4

n5

n6


=



α2 + α6

α5

α2 + α3 − α6

α1 − α5

α0 − α3

−α1 − α2

−α0 − α2


,

thus α5 = n1 ∈ Z, α1 = n3 + α5 ∈ Z, α2 = −n5 − α1 ∈ Z, α0 = −n6 − α2 ∈ Z,
α3 = α0 − n4 ∈ Z and α6 = n0 − α2 ∈ Z.

Now we show that ~α ·~1 ≡ 1 mod 7. Since

−2α0 − 2α1 − 9α2 − 2α3 − 2α5 − 2α6 = ~b · ~n ≡ 5 mod 7

and
2~α ·~1 +~b · ~n = −7α2 ≡ 0 mod 7
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we conclude that
2~α · 1 ≡ 2 mod 7

and thus since 2 and 7 are coprime,

~α · 1 ≡ 1 mod 7.

Now let ~β = (2, 1,−1, 3,−1, 1, 2). Note that ~β · ~1 = 7 ≡ 0 mod 7 and replacing ~α by

~α− k~β where k ∈ Z such that ~α ·~1 = 7k+ 1 doesn’t change anything, and we’re done.
Conversely, suppose ~n = α0~v0 + · · · + α6~v6 for some ~α ∈ Z7 such that ~α · ~1 = 1.

Write ~α = ~α′ − α4
~β with α′4 = 0. Then ~n = α′0 ~v0 + · · ·α′6 ~v6, ~α′ ·~1 ≡ 1 mod 7 and

~b · ~n = −2α′0 − 2α′1 − 9α′2 − 2α′3 − 2α′5 − 2α′6 = −2~α′ ·~1− 7α′2 ≡ 5 mod 7.

Clearly, ~n ·~1 = 0, and we are done.

Given ~n, let ~α = (α0, . . . , α6) be as in Lemma 4.4. Then

~n =



n0

n1

n2

n3

n4

n5

n6


=



α2 + α6

α5

α2 + α3 − α6

α1 − α5

α0 − α3

−α1 − α2

−α0 − α2


+ α4 ~v4 =



α2 + α4 + α6

α4 + α5

α2 + α3 − α6

α1 − α5

α0 − α3 − α4

−α1 − α2

−α0 − α2 − α4


and thus

‖~n‖2 = (α2 + α4 + α6)
2 + (α4 + α5)

2 + (α2 + α3 − α6)
2 + (α1 − α5)

2

+ (α0 − α3 − α4)
2 + (−α1 − α2)

2 + (−α0 − α2 − α4)
2

= 2α2
0 + 2α2

1 + 4α2
2 + 2α2

3 + 4α2
4 + 2α2

5 + 2α2
6

+ 2α0α2 − 2α0α3 + 2α1α2 − 2α1α5 + 2α2α3

+ 4α2α4 + 2α3α4 − 2α3α6 + 2α4α5 + 2α4α6

and

~b · ~n = (α4 + α5) + 2(α2 + α3 − α6) + 3(α1 − α5)

+ 4(α0 − α3 − α4) + 5(−α1 − α2) + 6(−α0 − α2 − α4)

= −2α0 − 2α1 − 9α2 − 2α3 − 9α4 − 2α5 − 2α6

= −2~α ·~1− 7α2 − 7α4 = −2− 7α2 − 7α4
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Therefore,

7

2
‖~n‖2 +~b · ~n = 7 ‖~α‖2 − 7(α0α3 + α3α6 + α1α5)− 2

− 7α2(1− α0 − α1 − α2 − α3 − α4)

− 7α4(1− α2 − α3 − α4 − α5 − α6)

= 7 ‖~α‖2 − 7(α0α3 + α3α6 + α1α5)

− 7α2(α5 + α6)− 7α4(α0 + α1)− 2

= 7 ‖~α‖2 − 7(α0α3 + α3α6 + α6α2 + α2α5 + α5α1 + α1α4 + α4α0)− 2

By renaming the coordinates of ~α (or initially the vectors ~vi) in the following way:

α0 → α0

α3 → α1

α6 → α2

α2 → α3

α5 → α4

α1 → α5

α4 → α6,

one obtains
7

2
‖~n‖2 +~b · ~n = 7Q(~α)− 2

where

Q(~α) = ‖~α‖2 −
6∑
i=0

αiαi+1

where the indices in the sum are taken mod 7. In the same way as before, one finds
the analogues of Equations (7) and (8):

∞∑
n=0

p(7n+ 5)qn+1 =
1

(q; q)7∞

∑
~α·~1=1
~α∈Z7

qQ(~α) (9)

∞∑
n=0

a7(7n+ 5)qn+1 =
∑
~α·~1=1
~α∈Z7

qQ(~α). (10)

By Theorem 4.2, the dihedral group D7 (generated by the 7-cycle (0 1 2 3 4 5 6) and
the triple transposition (1 6)(2 5)(3 4) in S7) is the automorphism group of Q, and
similarly a statistic splitting up the partitions into 7 equinumerous classes is given by
~b · ~α.
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Theorem 4.5. A crank for partitions λ of 7n+ 5 is given by the following algorithm.

(1) Find the 7-core λ̃ of λ by the bijection φ1.

(2) Find φ2(λ̃) = ~n.

(3) Let crank(λ) = 4n0 + 2n1 + n2 + n4 + 2n5 + 4n6 mod 7.

Proof. With the renaming of the ~α coordinates, we have

~n =



α2 + α3 + α6

α4 + α6

α1 − α2 + α3

−α4 + α5

α0 − α1 − α6

−α3 − α5

−α0 − α3 − α6


and

~b · ~n = −2− 7α3 − 7α6.

Thus, modulo 7 we have the following:

4n0 + 2n1 + n2 + n4 + 2n5 + 4n6 = 4(α2 + α3 + α6) + 2(α4 + α6) + α1 − α2 + α3

+ α0 − α1 − α6 + 2(−α3 − α5) + 4(−α0 − α3 − α6)

= −3α0 + 3α2 − α3 + 2α4 − 2α5 + α6

= 4~α ·~1 + 3α1 + 6α2 + 2α3 + 5α4 + α5 + 4α6

= 4 + 3~b · ~α.

The map Z/7Z→ Z/7Z, x 7→ 4+3x is a bijection (its inverse is x 7→ 5x+1). Since ~b ·~α
splits the partitions into 7 equinumerous classes and clearly crank(λ′) = − crank(λ),
this yields the desired result.

For the eleven paritions of 6 (all of which are 11-cores) we now have

~v0 := φ2((6)) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1)

~v1 := φ2((5, 1)) = (0, 0, 0, 0, 1, 0, 0, 0, 0,−1, 0)

~v2 := φ2((4, 2)) = (1, 0, 0, 1, 0, 0, 0, 0, 0,−1,−1)

~v3 := φ2((4, 1, 1)) = (0, 0, 0, 1, 0, 0, 0, 0,−1, 0, 0)

~v4 := φ2((3, 3)) = (0, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1)

~v5 := φ2((3, 2, 1)) = (1, 0, 1, 0, 0, 0, 0, 0,−1, 0,−1)

~v6 := φ2((3, 1, 1, 1)) = (0, 0, 1, 0, 0, 0, 0,−1, 0, 0, 0)

~v7 := φ2((2, 2, 2)) = (1, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0)

~v8 := φ2((2, 2, 1, 1)) = (1, 1, 0, 0, 0, 0, 0,−1, 0, 0,−1)

~v9 := φ2((2, 1, 1, 1, 1)) = (0, 1, 0, 0, 0, 0,−1, 0, 0, 0, 0)

~v10 := φ2((1, 1, 1, 1, 1, 1)) = (1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0)
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Now we obtain

~u0 := (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0) = −~v0 + ~v2 − ~v3 − ~v4 + ~v5 − ~v10
~u1 := (0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0) = −~v0 − ~v6 + ~v8 − ~v10
~u2 := (0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0) = −~v0 − ~v3 + ~v5 − ~v10
~u3 := (0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0) = −~v0 − ~v1 + ~v2

~u4 := (0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0) = −2~v0 + ~v1 + ~v5 − ~v6 − ~v7 + ~v8 − ~v10
~u5 := (0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0) = −~v0 − ~v2 − ~v3 − ~v4 + ~v5 + ~v9 − 2~v10

~u6 := (0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0) = −~v0 + ~v8 − ~v9 − ~v10
~u7 := (0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0) = −~v0 + ~v5 − ~v6 − ~v10
~u8 := (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0) = −~v0 + ~v2 − ~v3 − ~v10
~u9 := (0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1) = −~v0 + ~v5 − ~v6 − ~v7 + ~v8 − ~v10.

The vectors ~ui obviously form a basis of {1}⊥ in R11 (and by the above, the vectors
~vi span that same subspace). Let ~n ∈ Z11 such that ~n · ~1 = 0. The unique coefficients
βi ∈ R of the linear combination ~n = β0~u0 + · · ·+ β9~u9 are integers, since β0 = n0 ∈ Z,
β1 = n1 + β0 ∈ Z, etc. Thus if ~n = α0~v0 + · · ·+ α10~v10 then ~α ∈ Z11, since the ~ui’s are
integer linear combinations of the ~vi’s.

As usual, we have

Lemma 4.6. A vector ~n ∈ Z11 satisfies ~n ·~1 = 0 and ~b · ~n ≡ 6 mod 11 if, and only if,
~n = α0~v0 + · · · + α10~v10 for some ~α ∈ Z11 such that ~α · ~1 = 1. Further, such an ~α is
unique.

Proof. Suppose ~n ∈ Z11 satisfies ~n ·~1 = 0 and ~b · ~n ≡ 6 mod 11. Let ~α ∈ Z11 such that
~n = α0~v0 + · · ·+ α10~v10. We begin by showing that ~α ·~1 ≡ 1 mod 11. We have

~n =



n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10


=



α2 + α5 + α7 + α8 + α10

α4 + α7 + α8 + α9

α4 + α5 + α6

α2 + α3

α1

α0 − α10

−α9

−α6 − α8

−α3 − α5 − α7

−α1 − α2 − α4 − α7

−α0 − α2 − α4 − α5 − α8


and

− 5α0 − 5α1 − 16α2 − 5α3 − 16α4 − 16α5 − 5α6 − 16α7 − 16α8 − 5α9 − 5α10

= ~b · ~n
≡ 6 mod 11.
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Therefore,
5~α ·~1 ≡ 5 mod 11,

and multiplying both sides by 9, one obtains

~α ·~1 ≡ 1 mod 11.

Note that
~v7 = −6~v0 + 2~v2 − 2~v3 − ~v4 + 3~v5 − 2~v6 + 2~v8 − 6~v10.

Let k ∈ Z such that ~α ·~1 = 11k + 1. Let

~β = (−6, 0, 2,−2,−1, 3,−2,−1, 2, 0,−6).

Since ~β ·~1 = −11 and adding or subtracting ~β from ~α doesn’t change ~n, we can replace
~α by ~α + k~β.

For the converse, note that

~b · ~n = −5~α ·~1− 11(α2 + α4 + α5 + α7 + α8)

= −5− 11(α2 + α4 + α5 + α7 + α8)

≡ 6 mod 11.

Given ~n, let ~α be as in Lemma 4.6. Then

‖~n‖2 = (α2 + α5 + α7 + α8 + α10)
2 + (α4 + α7 + α8 + α9)

2 + (α4 + α5 + α6)
2

+ (α2 + α3)
2 + α2

1 + (α0 − α10)
2 + (−α9)

2 + (−α6 − α8)
2

+ (−α3 − α5 − α7)
2 + (−α1 − α2 − α4 − α7)

2 + (−α0 − α2 − α4 − α5 − α8)
2

= 2α2
0 + 2α2

1 + 4α2
2 + 2α2

3 + 4α2
4 + 4α2

5 + 2α2
6 + 4α2

7 + 4α2
8 + 2α2

9 + 2α2
10

+ 2α0α2 + 2α0α4 + 2α0α5 + 2α0α8 − 2α0α10 + 2α1α2 + 2α1α4 + 2α1α7

+ 2α2α3 + 4α2α4 + 4α2α5 + 4α2α7 + 4α2α8 + 2α2α10 + 2α3α5 + 2α3α7

+ 4α4α5 + 2α4α6 + 4α4α7 + 4α4α8 + 2α4α9 + 2α5α6 + 4α5α7 + 4α5α8

+ 2α5α10 + 2α6α8 + 4α7α8 + 2α7α9 + 2α7α10 + 2α8α9 + 2α8α10

and
~b · ~n = −5− 11α2 − 11α4 − 11α5 − 11α7 − 11α8.
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Therefore,

11

2
‖~n‖2 +~b · ~n = 11 ‖~α‖2 − 11α0α10 − 5

− 11α2(1− α0 − α1 − α2 − α3 − α4 − α5 − α7 − α8 − α10)

− 11α4(1− α0 − α1 − α2 − α4 − α5 − α6 − α7 − α8 − α9)

− 11α5(1− α0 − α2 − α3 − α4 − α5 − α6 − α7 − α8 − α10)

− 11α7(1− α1 − α2 − α3 − α4 − α5 − α7 − α8 − α9 − α10)

− 11α8(1− α0 − α2 − α4 − α5 − α6 − α7 − α8 − α9 − α10)

= 11 ‖~α‖2 − 11α0α10 − 5− 11α2(α6 + α9)− 11α4(α3 + α10)

− 11α5(α1 + α9)− 11α7(α0 + α6)− 11α8(α1 + α3)

= 11 ‖~α‖2 − 11(α0α10 + α10α4 + α4α3 + α3α8 + α8α1 + α1α5

+ α5α9 + α9α2 + α2α6 + α6α7 + α7α0)− 5

As before, we can make the following change of variables:

α0 → α0

α10 → α1

α4 → α2

α3 → α3

α8 → α4

α1 → α5

α5 → α6

α9 → α7

α2 → α8

α6 → α9

α7 → α10

and obtain
11

2
‖~n‖2 +~b · ~n = 11Q(~α)− 5

where

Q(~α) = ‖~α‖2 −
10∑
i=0

αiαi+1

and the indices in the sum are taken mod 11. As usual, we obtain

∞∑
n=0

p(11n+ 6)qn+1 =
1

(q; q)11∞

∑
~α·~1=1
~α∈Z11

qQ(~α) (11)
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∞∑
n=0

a11(11n+ 6)qn+1 =
∑
~α·~1=1
~α∈Z11

qQ(~α). (12)

By Theorem 4.2, the automorphism group is isomorphic to the dihedral group D11.
Thus as before, a statistic splitting the partitions into 11 equinumerous classes is given
by ~b · ~α.

Theorem 4.7. A crank for partitions λ of 11n+ 6 is given by the following algorithm.

(1) Find the 11-core λ̃ of λ by the bijection φ1.

(2) Find φ2(λ̃) = ~n.

(3) Let crank(λ) = 4n0 + 9n1 + 5n2 + 3n3 + n4 + n6 + 3n7 + 5n8 + 9n9 + 4n10 mod 11.

Proof. With the renaming of the ~α coordinates, we have

~n =



α1 + α4 + α6 + α8 + α10

α2 + α4 + α7 + α10

α2 + α6 + α9

α3 + α8

α5

α0 − α1

−α7

−α4 − α9

−α3 − α6 − α10

−α2 − α5 − α8 − α10

−α0 − α2 − α4 − α6 − α8


and

~b · ~α = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 7α7 + 8α8 + 9α9 + 10α10

Thus, modulo 11 we have the following:

4n0 + 9n1 + 5n2 + 3n3 + n4 + n6 + 3n7 + 5n8 + 9n9 + 4n10

= 4(α1 + α4 + α6 + α8 + α10) + 9(α2 + α4 + α7 + α10) + 5(α2 + α6 + α9) + 3(α3 + α8)

+ α5 − α7 + 3(−α4 − α9) + 5(−α3 − α6 − α10) + 9(−α2 − α5 − α8 − α10)

+ 4(−α0 − α2 − α4 − α6 − α8)

= −4α0 + 4α1 + α2 − 2α3 + 6α4 − 8α5 + 8α7 − 6α8 + 2α9 − α10

= 7~α ·~1 + 8α1 + 5α2 + 2α3 + 10α4 + 7α5 + 4α6 + α7 + 9α8 + 6α9 + 3α10

= 7 + 8~b · ~α.

The map Z/11Z→ Z/11Z, x 7→ 7 + 8x is a bijection (its inverse is x 7→ 7x+ 6). Since
~b ·~α splits the partitions into 11 equinumerous classes and crank(λ′) = − crank(λ), this
yields the desired result.
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