Cranks and t-cores
 Initiation à la recherche, M1 Université de Paris

Dagur Tómas Ásgeirsson
May 12, 2020
Advisor:
Olivier Brunat

Table of contents

1. Ramanujan's congruences
2. Hooks and t-cores
3. Two bijections
4. Construction of cranks

Ramanujan's congruences

Partitions

- Partition of $n \in \mathbb{N}$: finite sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $n=\lambda_{1}+\cdots+\lambda_{k}$.

Partitions

- Partition of $n \in \mathbb{N}$: finite sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $n=\lambda_{1}+\cdots+\lambda_{k}$.
- The λ_{i} 's are called the parts of $\lambda ; n$ is denoted $|\lambda|$ and the number of partitions of n is denoted $p(n)$.

Partitions

- Partition of $n \in \mathbb{N}$: finite sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{k}$ and $n=\lambda_{1}+\cdots+\lambda_{k}$.
- The λ_{i} 's are called the parts of $\lambda ; n$ is denoted $|\lambda|$ and the number of partitions of n is denoted $p(n)$.
- A partition may be represented by a so-called Young diagram, i.e. an array of cells such that the i-th line has λ_{i} cells for $i=1, \ldots, k$.

Figure 1: Young diagram of the partition $\lambda=(5,4,2)$.

Conjugate partition

Figure 2: Young diagrams of $\lambda=(5,4,2)$ and its conjugate $\lambda^{\prime}=(3,3,2,2,1)$.

- Obvious 1-1 correspondence between partitions and Young diagrams.

Conjugate partition

Figure 2: Young diagrams of $\lambda=(5,4,2)$ and its conjugate $\lambda^{\prime}=(3,3,2,2,1)$.

- Obvious 1-1 correspondence between partitions and Young diagrams.
- Conjugate partition of λ : the partition λ^{\prime} obtained by transposing the Young diagram of λ.

Ramanujan's congruences

Theorem. (Ramanujan's congruences). For $n \in \mathbb{N}$,

$$
\begin{aligned}
p(5 n+4) & \equiv 0(\bmod 5) \\
p(7 n+5) & \equiv 0(\bmod 7) \\
p(11 n+6) & \equiv 0(\bmod 11)
\end{aligned}
$$

Dyson's rank

- "Combinatorial" proof of Ramanujan's congruences: find a statistic on partitions of $5 n+4$ (resp. $7 n+5,11 n+6$) splitting them into 5 (resp. 7, 11) equinumerous classes.

Dyson's rank

- "Combinatorial" proof of Ramanujan's congruences: find a statistic on partitions of $5 n+4$ (resp. $7 n+5,11 n+6$) splitting them into 5 (resp. 7, 11) equinumerous classes.
- For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ a partition, Dyson defined $\operatorname{rank}(\lambda)=\lambda_{1}-k$. Clearly $\operatorname{rank}(\lambda)=-\operatorname{rank}\left(\lambda^{\prime}\right)$.

Dyson's rank

- "Combinatorial" proof of Ramanujan's congruences: find a statistic on partitions of $5 n+4$ (resp. $7 n+5,11 n+6$) splitting them into 5 (resp. 7, 11) equinumerous classes.
- For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ a partition, Dyson defined $\operatorname{rank}(\lambda)=\lambda_{1}-k$. Clearly $\operatorname{rank}(\lambda)=-\operatorname{rank}\left(\lambda^{\prime}\right)$.
- Denote $N(m, t, n)=\#\{\lambda$ partition of $n \mid \operatorname{rank}(\lambda) \equiv m(\bmod t)\}$. Then $N(t-m, t, n)=N(m, t, n)$.

Dyson's rank

- "Combinatorial" proof of Ramanujan's congruences: find a statistic on partitions of $5 n+4$ (resp. $7 n+5,11 n+6$) splitting them into 5 (resp. 7, 11) equinumerous classes.
- For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ a partition, Dyson defined $\operatorname{rank}(\lambda)=\lambda_{1}-k$. Clearly $\operatorname{rank}(\lambda)=-\operatorname{rank}\left(\lambda^{\prime}\right)$.
- Denote $N(m, t, n)=\#\{\lambda$ partition of $n \mid \operatorname{rank}(\lambda) \equiv m(\bmod t)\}$. Then $N(t-m, t, n)=N(m, t, n)$.
- Dyson's conjecture: rank is the desired statistic for $5 n+4$ and $7 n+5$, i.e.

$$
N(m, 5,5 n+4)=\frac{p(5 n+4)}{5}
$$

for $m=0,1,2,3,4$ and

$$
N(m, 7,7 n+5)=\frac{p(7 n+5)}{7}
$$

for $m=0,1,2,3,4,5,6$.

Dyson's crank

- The rank doesn't work for partitions of $11 n+6$.

Dyson's crank

- The rank doesn't work for partitions of $11 n+6$.
- Dyson conjectured about the existence of a similar statistic $\operatorname{crank}(\lambda)$, with the same properties:

Dyson's crank

- The rank doesn't work for partitions of $11 n+6$.
- Dyson conjectured about the existence of a similar statistic $\operatorname{crank}(\lambda)$, with the same properties:
- Denote $M(m, t, n)=\#\{\lambda$ partition of $n \mid \operatorname{crank}(\lambda) \equiv m(\bmod t)\}$. Then the following should hold:

$$
\begin{aligned}
& M(m, t, n)=M(t-m, t, n) \\
& M(m, t, t n+r)=\frac{p(t n+r)}{t}
\end{aligned}
$$

for $m \in\{0, \ldots, t-1\}$ where $(t, r) \in\{(5,4),(7,5),(11,6)\}$.

Dyson's conjectures resolved

- 1954: Atkin and Swinnerton-Dyer prove Dyson's conjecture about the rank for partitions of $5 n+4$ and $7 n+5$.

Dyson's conjectures resolved

- 1954: Atkin and Swinnerton-Dyer prove Dyson's conjecture about the rank for partitions of $5 n+4$ and $7 n+5$.
- 1988: Andrews and Garvan find cranks.

Dyson's conjectures resolved

- 1954: Atkin and Swinnerton-Dyer prove Dyson's conjecture about the rank for partitions of $5 n+4$ and $7 n+5$.
- 1988: Andrews and Garvan find cranks.
- 1990: Garvan, Kim and Stanton give a single strategy to find cranks for $5 n+4,7 n+5$ and $11 n+6$, along with explicit bijections between the crank classes. Our aim is to explain and clarify their work.

Hooks and t-cores

Hooks

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition and $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right)$ its conjugate.

1. The (i, j)-cell of λ is the cell in row i and column j of the Young-diagram of λ.

Figure 3: $(2,3)$-cell of the partition $\lambda=(5,4,2)$.

Hooks

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition and $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{m}^{\prime}\right)$ its conjugate.

1. The (i, j)-cell of λ is the cell in row i and column j of the Young-diagram of λ.

Figure 3: (2,3)-cell of the partition $\lambda=(5,4,2)$.
2. The (i, j)-hook of λ is the subset consisting of the (i, r) - and (s, j)-cells of λ with $r \geq j$ and $s \geq i$. The (i, j)-hook of λ is denoted $H_{i j}^{\lambda}$.

Figure 4: (1,2)-hook of the partition $\lambda=(6,4,4,2,1)$.

Hooks

3. The number $h_{i j}^{\lambda}=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ of cells in $H_{i j}^{\lambda}$ is called the length of $H_{i j}^{\lambda}$.

Hooks

3. The number $h_{i j}^{\lambda}=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ of cells in $H_{i j}^{\lambda}$ is called the length of $H_{i j}^{\lambda}$.
4. The (i, j)-cell is said to be on the rim it is the last in a north-west to south-east diagonal (i.e. if the ($i+1, j+1$)-cell does not exist).

Hooks

3. The number $h_{i j}^{\lambda}=\lambda_{i}-i+\lambda_{j}^{\prime}-j+1$ of cells in $H_{i j}^{\lambda}$ is called the length of $H_{i j}^{\lambda}$.
4. The (i, j)-cell is said to be on the rim it is the last in a north-west to south-east diagonal (i.e. if the ($i+1, j+1$)-cell does not exist).
5. The set of (r, s)-cells on the rim of λ such that $i \leq r \leq \lambda_{i}$ and $j \leq s \leq \lambda_{j}^{\prime}$ is denoted $R_{i j}^{\lambda}$ and called the associated part of the rim or the rim- (i, j)-hook of λ.

Figure 5: Rim-(1,2)-hook of the partition $\lambda=(6,4,4,2,1)$.

t-cores

- Pick a hook of λ and remove the associated part of the rim. The resulting diagram is a new Young-diagram. Clearly, the number of cells in $R_{i j}^{\lambda}$ is the same as in $H_{i j}^{\lambda}$.
- Pick a hook of λ and remove the associated part of the rim. The resulting diagram is a new Young-diagram. Clearly, the number of cells in $R_{i j}^{\lambda}$ is the same as in $H_{i j}^{\lambda}$.
- Definition. The (i, j)-hook of a partition λ is called a t-hook if $h_{i j}^{\lambda}=t$. The associated part of the rim is called a rim-t-hook. The partition λ is said to be a t-core if it has no hooks of length divisible by t, or equivalently no rim hooks of length divisible by t.
- Pick a hook of λ and remove the associated part of the rim. The resulting diagram is a new Young-diagram. Clearly, the number of cells in $R_{i j}^{\lambda}$ is the same as in $H_{i j}^{\lambda}$.
- Definition. The (i, j)-hook of a partition λ is called a t-hook if $h_{i j}^{\lambda}=t$. The associated part of the rim is called a rim-t-hook. The partition λ is said to be a t-core if it has no hooks of length divisible by t, or equivalently no rim hooks of length divisible by t.
- Theorem. Pick a number t and a partition λ. By subsequent removal of rim-t-hooks from λ, one eventually obtains a t-core partition $\tilde{\lambda}$, independent of the sequence of removals. This unique partition $\tilde{\lambda}$ is called the t-core of λ.

t-cores

We find the 3 -core of $\lambda=(6,4,4,2,1)$: $\tilde{\lambda}=(3,1,1)$.

t-cores

We find the 3 -core of $\lambda=(6,4,4,2,1)$: $\tilde{\lambda}=(3,1,1)$.

t-cores

We find the 3 -core of $\lambda=(6,4,4,2,1): \tilde{\lambda}=(3,1,1)$.

t-cores

We find the 3 -core of $\lambda=(6,4,4,2,1)$: $\tilde{\lambda}=(3,1,1)$.

t-cores

We find the 3 -core of $\lambda=(6,4,4,2,1): \tilde{\lambda}=(3,1,1)$.

Two bijections

Existence of bijections

Theorem. Let P denote the set of partitions, $P_{t-\text { core }}$ the set of t-cores. There are bijections

$$
\phi_{1}: P \rightarrow P_{t-\text { core }} \times P \times \cdots \times P, \quad \lambda \mapsto\left(\tilde{\lambda}, \lambda_{0}, \ldots, \lambda_{t-1}\right),
$$

Existence of bijections

Theorem. Let P denote the set of partitions, $P_{t-\text { core }}$ the set of t-cores. There are bijections

$$
\phi_{1}: P \rightarrow P_{t-\text { core }} \times P \times \cdots \times P, \quad \lambda \mapsto\left(\tilde{\lambda}, \lambda_{0}, \ldots, \lambda_{t-1}\right),
$$

such that

$$
|\lambda|=|\tilde{\lambda}|+t \sum_{i=0}^{t-1}\left|\lambda_{i}\right|
$$

Existence of bijections

Theorem. Let P denote the set of partitions, $P_{t-\text { core }}$ the set of t-cores. There are bijections

$$
\phi_{1}: P \rightarrow P_{t-\text { core }} \times P \times \cdots \times P, \quad \lambda \mapsto\left(\tilde{\lambda}, \lambda_{0}, \ldots, \lambda_{t-1}\right),
$$

such that

$$
|\lambda|=|\tilde{\lambda}|+t \sum_{i=0}^{t-1}\left|\lambda_{i}\right|
$$

and
$\phi_{2}: P_{t-\text { core }} \rightarrow\left\{\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right) \in \mathbb{Z}^{t}: n_{0}+\cdots+n_{t-1}=0\right\}, \quad \tilde{\lambda} \mapsto \vec{n}$,

Existence of bijections

Theorem. Let P denote the set of partitions, $P_{t-\text { core }}$ the set of t-cores. There are bijections

$$
\phi_{1}: P \rightarrow P_{t-\text { core }} \times P \times \cdots \times P, \quad \lambda \mapsto\left(\tilde{\lambda}, \lambda_{0}, \ldots, \lambda_{t-1}\right),
$$

such that

$$
|\lambda|=|\tilde{\lambda}|+t \sum_{i=0}^{t-1}\left|\lambda_{i}\right|
$$

and
$\phi_{2}: P_{t-\text { core }} \rightarrow\left\{\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right) \in \mathbb{Z}^{t}: n_{0}+\cdots+n_{t-1}=0\right\}, \quad \tilde{\lambda} \mapsto \vec{n}$,
where

$$
|\tilde{\lambda}|=t\|\vec{n}\|^{2} / 2+\vec{b} \cdot \vec{n}, \quad \vec{b}=(0,1, \ldots, t-1) .
$$

Definition of ϕ_{2}

Let $\tilde{\lambda} \in P_{t-\text { core }}$. Define $\phi_{2}(\tilde{\lambda})=\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right)$ as follows:

Definition of ϕ_{2}

Let $\tilde{\lambda} \in P_{t-c o r e}$. Define $\phi_{2}(\tilde{\lambda})=\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right)$ as follows:
Label the (i, j)-cell of $\tilde{\lambda}$ with $j-i \bmod t$. Add an infinite column to the left of $\tilde{\lambda}$ (the 0 -th column) and label its cells in the same way (the extended t-residue diagram).

Definition of ϕ_{2}

Let $\tilde{\lambda} \in P_{t-c o r e}$. Define $\phi_{2}(\tilde{\lambda})=\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right)$ as follows:
Label the (i, j)-cell of $\tilde{\lambda}$ with $j-i \bmod t$. Add an infinite column to the left of $\tilde{\lambda}$ (the 0 -th column) and label its cells in the same way (the extended t-residue diagram).

A cell of the extended t-residue diagram is called exposed if it is at the (right) end of a row. For $r \in \mathbb{Z}$ we define region r of the extended t-residue diagram to be the set of cells such that

$$
r(t-1) \leq j-i<t r
$$

Definition of ϕ_{2}

Let $\tilde{\lambda} \in P_{t-c o r e}$. Define $\phi_{2}(\tilde{\lambda})=\vec{n}=\left(n_{0}, \ldots, n_{t-1}\right)$ as follows:
Label the (i, j)-cell of $\tilde{\lambda}$ with $j-i \bmod t$. Add an infinite column to the left of $\tilde{\lambda}$ (the 0 -th column) and label its cells in the same way (the extended t-residue diagram).

A cell of the extended t-residue diagram is called exposed if it is at the (right) end of a row. For $r \in \mathbb{Z}$ we define region r of the extended t-residue diagram to be the set of cells such that

$$
r(t-1) \leq j-i<t r
$$

For $i=0, \ldots t-1$ we define n_{i} as the maximum number of a region containing an exposed cell labelled i. This number is well defined since column 0 contains infinitely many exposed cells.

ϕ_{2} example

Consider $\tilde{\lambda}=(4,2)$. Then $n_{0}=2, n_{1}=-1$ and $n_{2}=-1$ (see Figure 6, where region -1 of the extended 3 -residue diagram is coloured white, region 0 in red, region 1 in green and region 2 in blue).

Figure 6: Extended 3-residue diagram of the 3-core $\tilde{\lambda}=(4,2)$.

ϕ_{2} example

Consider $\tilde{\lambda}=(4,2)$. Then $n_{0}=2, n_{1}=-1$ and $n_{2}=-1$ (see Figure 6, where region -1 of the extended 3 -residue diagram is coloured white, region 0 in red, region 1 in green and region 2 in blue).

Figure 6: Extended 3-residue diagram of the 3-core $\tilde{\lambda}=(4,2)$.

Remark. If $\phi_{2}(\lambda)=\left(n_{0}, \ldots, n_{t-1}\right)$, then $\phi_{2}\left(\lambda^{\prime}\right)=\left(-n_{t-1}, \ldots,-n_{0}\right)$.

Remark about ϕ_{1}

The $\tilde{\lambda}$ in the formula

$$
\phi_{1}(\lambda)=\left(\tilde{\lambda}, \lambda_{0}, \ldots, \lambda_{t-1}\right)
$$

is in fact the t-core of λ. How the λ_{i} 's are defined is not important for now.

Since hook lengths are preserved by conjugation, we note that $\widetilde{\left(\lambda^{\prime}\right)}=(\tilde{\lambda})^{\prime}$.

Construction of cranks

Basis

- The cases $5 n+4,7 n+5$ and $11 n+6$ are similar, so we focus on $7 n+5$.

Basis

- The cases $5 n+4,7 n+5$ and $11 n+6$ are similar, so we focus on $7 n+5$.
- 7 partitions of 5; all of them are 7-cores:

$$
5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1
$$

Basis

- The cases $5 n+4,7 n+5$ and $11 n+6$ are similar, so we focus on $7 n+5$.
- 7 partitions of 5; all of them are 7-cores:

$$
5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1
$$

- Define

$$
\begin{aligned}
& \vec{v}_{0}:=\phi_{2}((5))=(0,0,0,0,1,0,-1) \\
& \vec{v}_{1}:=\phi_{2}((4,1))=(0,0,0,1,0,-1,0) \\
& \vec{v}_{2}:=\phi_{2}((3,2))=(1,0,1,0,0,-1,-1) \\
& \vec{v}_{3}:=\phi_{2}((3,1,1))=(0,0,1,0,-1,0,0) \\
& \vec{v}_{4}:=\phi_{2}((2,2,1))=(1,1,0,0,-1,0,-1) \\
& \vec{v}_{5}:=\phi_{2}((2,1,1,1))=(0,1,0,-1,0,0,0) \\
& \vec{v}_{6}:=\phi_{2}((1,1,1,1,1))=(1,0,-1,0,0,0,0)
\end{aligned}
$$

Quadratic form

Lemma. A vector $\vec{n} \in \mathbb{Z}^{7}$ satisfies $\vec{n} \cdot \overrightarrow{1}=0$ and $\vec{b} \cdot \vec{n} \equiv 5 \bmod 7 \mathrm{if}$, and only if, $\vec{n}=\alpha_{0} \vec{v}_{0}+\cdots+\alpha_{6} \vec{v}_{6}$ for some $\vec{\alpha} \in \mathbb{Z}^{7}$ such that $\vec{\alpha} \cdot \overrightarrow{1}=1$. Further, such an $\vec{\alpha}$ is unique.

Quadratic form

Lemma. A vector $\vec{n} \in \mathbb{Z}^{7}$ satisfies $\vec{n} \cdot \overrightarrow{1}=0$ and $\vec{b} \cdot \vec{n} \equiv 5 \bmod 7 \mathrm{if}$, and only if, $\vec{n}=\alpha_{0} \vec{v}_{0}+\cdots+\alpha_{6} \vec{v}_{6}$ for some $\vec{\alpha} \in \mathbb{Z}^{7}$ such that $\vec{\alpha} \cdot \overrightarrow{1}=1$. Further, such an $\vec{\alpha}$ is unique.

We have

$$
\vec{n}=\left(\begin{array}{c}
n_{0} \\
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{2}+\alpha_{4}+\alpha_{6} \\
\alpha_{4}+\alpha_{5} \\
\alpha_{2}+\alpha_{3}-\alpha_{6} \\
\alpha_{1}-\alpha_{5} \\
\alpha_{0}-\alpha_{3}-\alpha_{4} \\
-\alpha_{1}-\alpha_{2} \\
-\alpha_{0}-\alpha_{2}-\alpha_{4}
\end{array}\right)
$$

Quadratic form

Lemma. A vector $\vec{n} \in \mathbb{Z}^{7}$ satisfies $\vec{n} \cdot \overrightarrow{1}=0$ and $\vec{b} \cdot \vec{n} \equiv 5 \bmod 7 \mathrm{if}$, and only if, $\vec{n}=\alpha_{0} \vec{v}_{0}+\cdots+\alpha_{6} \vec{v}_{6}$ for some $\vec{\alpha} \in \mathbb{Z}^{7}$ such that $\vec{\alpha} \cdot \overrightarrow{1}=1$. Further, such an $\vec{\alpha}$ is unique.

We have

$$
\vec{n}=\left(\begin{array}{c}
n_{0} \\
n_{1} \\
n_{2} \\
n_{3} \\
n_{4} \\
n_{5} \\
n_{6}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{2}+\alpha_{4}+\alpha_{6} \\
\alpha_{4}+\alpha_{5} \\
\alpha_{2}+\alpha_{3}-\alpha_{6} \\
\alpha_{1}-\alpha_{5} \\
\alpha_{0}-\alpha_{3}-\alpha_{4} \\
-\alpha_{1}-\alpha_{2} \\
-\alpha_{0}-\alpha_{2}-\alpha_{4}
\end{array}\right)
$$

and thus
$\frac{7}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=7\|\vec{\alpha}\|^{2}-7\left(\alpha_{0} \alpha_{3}+\alpha_{3} \alpha_{6}+\alpha_{6} \alpha_{2}+\alpha_{2} \alpha_{5}+\alpha_{5} \alpha_{1}+\alpha_{1} \alpha_{4}+\alpha_{4} \alpha_{0}\right)-2$
(this number is $|\tilde{\lambda}|$)

Proof of Ramanujan's congruence

By a change of coordinates, one obtains

$$
\frac{7}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=7 Q(\vec{\alpha})-2
$$

where

$$
Q(\vec{\alpha})=\|\vec{\alpha}\|^{2}-\sum_{i=0}^{6} \alpha_{i} \alpha_{i+1}
$$

where the indices in the sum are taken mod 7 .

Proof of Ramanujan's congruence

By a change of coordinates, one obtains

$$
\frac{7}{2}\|\vec{n}\|^{2}+\vec{b} \cdot \vec{n}=7 Q(\vec{\alpha})-2
$$

where

$$
Q(\vec{\alpha})=\|\vec{\alpha}\|^{2}-\sum_{i=0}^{6} \alpha_{i} \alpha_{i+1}
$$

where the indices in the sum are taken mod 7 .
The quadratic form Q is invariant under the 7-cycle (0 12345 6) (in fact, the automorphism group is isomorphic to D_{7}). It has no fixed point $\vec{\alpha}$ (since $\vec{\alpha} \cdot \overrightarrow{1}=1$), thus each of its orbits is of cardinality 7 , proving Ramanujan's congruence mod 7.

Crank for $7 n+5$

A statistic which increases by 1 mod 7 on each cyclic permutation of the coordinates of $\vec{\alpha}$ is

$$
\vec{b} \cdot \vec{\alpha} .
$$

Crank for $7 n+5$

A statistic which increases by 1 mod 7 on each cyclic permutation of the coordinates of $\vec{\alpha}$ is

$$
\vec{b} \cdot \vec{\alpha}
$$

This statistic satisfies the second condition of being a crank, i.e.

$$
M(m, 7,7 n+5)=\frac{p(7 n+5)}{7}
$$

but not the first.

Crank for $7 n+5$

Theorem. A crank for partitions λ of $7 n+5$ is given by the following algorithm.
(1) Find the 7 -core $\tilde{\lambda}$ of λ by the bijection ϕ_{1}.
(2) Find $\phi_{2}(\tilde{\lambda})=\vec{n}$.
(3) Let $\operatorname{crank}(\lambda)=4 n_{0}+2 n_{1}+n_{2}+n_{4}+2 n_{5}+4 n_{6} \bmod 7$.

Crank for $7 n+5$

Theorem. A crank for partitions λ of $7 n+5$ is given by the following algorithm.
(1) Find the 7 -core $\tilde{\lambda}$ of λ by the bijection ϕ_{1}.
(2) Find $\phi_{2}(\tilde{\lambda})=\vec{n}$.
(3) Let $\operatorname{crank}(\lambda)=4 n_{0}+2 n_{1}+n_{2}+n_{4}+2 n_{5}+4 n_{6} \bmod 7$.

In fact, $\operatorname{crank}(\lambda)=4+3 \vec{b} \cdot \vec{\alpha}$. Since $x \mapsto 4+3 x$ is bijective on $\mathbb{Z} / 7 \mathbb{Z}$, and $\operatorname{crank}(\lambda)=-\operatorname{crank}\left(\lambda^{\prime}\right)$, we conclude that $\operatorname{crank}(\lambda)$ satisfies both the conditions imposed by Dyson on his crank.

Thanks for listening!

