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Ramanujan’s congruences



Partitions

• Partition of n ∈ N: finite sequence λ = (λ1, . . . , λk) with
λ1 ≥ · · · ≥ λk and n = λ1 + · · ·+ λk.

• The λi’s are called the parts of λ; n is denoted |λ| and the
number of partitions of n is denoted p(n).

• A partition may be represented by a so-called Young diagram,
i.e. an array of cells such that the i-th line has λi cells for
i = 1, . . . , k.

Figure 1: Young diagram of the partition λ = (5, 4, 2).
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Conjugate partition

Figure 2: Young diagrams of λ = (5, 4, 2) and its conjugate λ′ = (3, 3, 2, 2, 1).

• Obvious 1-1 correspondence between partitions and Young
diagrams.

• Conjugate partition of λ: the partition λ′ obtained by
transposing the Young diagram of λ.
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Ramanujan’s congruences

Theorem. (Ramanujan’s congruences). For n ∈ N,

p(5n+ 4) ≡ 0 (mod 5)
p(7n+ 5) ≡ 0 (mod 7)
p(11n+ 6) ≡ 0 (mod 11)

4



Dyson’s rank

• “Combinatorial” proof of Ramanujan’s congruences: find a
statistic on partitions of 5n+ 4 (resp. 7n+ 5, 11n+ 6) splitting
them into 5 (resp. 7, 11) equinumerous classes.

• For λ = (λ1, . . . , λk) a partition, Dyson defined rank(λ) = λ1 − k.
Clearly rank(λ) = − rank(λ′).

• Denote N(m, t,n) = #{λ partition of n| rank(λ) ≡ m (mod t)}.
Then N(t−m, t,n) = N(m, t,n).

• Dyson’s conjecture: rank is the desired statistic for 5n+ 4 and
7n+ 5, i.e.

N(m, 5, 5n+ 4) = p(5n+ 4)
5

for m = 0, 1, 2, 3, 4 and

N(m, 7, 7n+ 5) = p(7n+ 5)
7

for m = 0, 1, 2, 3, 4, 5, 6.
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Dyson’s crank

• The rank doesn’t work for partitions of 11n+ 6.

• Dyson conjectured about the existence of a similar statistic
crank(λ), with the same properties:

• Denote M(m, t,n) = #{λ partition of n| crank(λ) ≡ m (mod t)}.
Then the following should hold:

M(m, t,n) = M(t−m, t,n)

M(m, t, tn+ r) = p(tn+ r)
t

for m ∈ {0, . . . , t− 1} where (t, r) ∈ {(5, 4), (7, 5), (11, 6)}.
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Dyson’s conjectures resolved

• 1954: Atkin and Swinnerton-Dyer prove Dyson’s conjecture about
the rank for partitions of 5n+ 4 and 7n+ 5.

• 1988: Andrews and Garvan find cranks.
• 1990: Garvan, Kim and Stanton give a single strategy to find
cranks for 5n+ 4, 7n+ 5 and 11n+ 6, along with explicit
bijections between the crank classes. Our aim is to explain and
clarify their work.
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Hooks and t-cores



Hooks

Let λ = (λ1, . . . , λn) be a partition and λ′ = (λ′
1, . . . , λ

′
m) its conjugate.

1. The (i, j)-cell of λ is the cell in row i and column j of the
Young-diagram of λ.

Figure 3: (2,3)-cell of the partition λ = (5, 4, 2).

2. The (i, j)-hook of λ is the subset consisting of the (i, r)- and
(s, j)-cells of λ with r ≥ j and s ≥ i. The (i, j)-hook of λ is
denoted Hλ

ij .

Figure 4: (1,2)-hook of the partition λ = (6, 4, 4, 2, 1).
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Hooks

3. The number hλij = λi − i+ λ′
j − j+ 1 of cells in Hλ

ij is called the
length of Hλ

ij .

4. The (i, j)-cell is said to be on the rim it is the last in a north-west
to south-east diagonal (i.e. if the (i+ 1, j+ 1)-cell does not exist).

5. The set of (r, s)-cells on the rim of λ such that i ≤ r ≤ λi and
j ≤ s ≤ λ′

j is denoted Rλij and called the associated part of the
rim or the rim-(i, j)-hook of λ.

Figure 5: Rim-(1,2)-hook of the partition λ = (6, 4, 4, 2, 1).
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t-cores

• Pick a hook of λ and remove the associated part of the rim. The
resulting diagram is a new Young-diagram. Clearly, the number
of cells in Rλij is the same as in Hλ

ij .

• Definition. The (i, j)-hook of a partition λ is called a t-hook if
hλij = t. The associated part of the rim is called a rim-t-hook. The
partition λ is said to be a t-core if it has no hooks of length
divisible by t, or equivalently no rim hooks of length divisible by
t.

• Theorem. Pick a number t and a partition λ. By subsequent
removal of rim-t-hooks from λ, one eventually obtains a t-core
partition λ̃, independent of the sequence of removals. This
unique partition λ̃ is called the t-core of λ.
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t-cores

We find the 3-core of λ = (6, 4, 4, 2, 1): λ̃ = (3, 1, 1).

→ → →

→
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Two bijections



Existence of bijections

Theorem. Let P denote the set of partitions, Pt−core the set of t-cores.
There are bijections

ϕ1 : P→ Pt−core × P× · · · × P, λ 7→ (λ̃, λ0, . . . , λt−1),

such that

|λ| = |λ̃|+ t
t−1∑
i=0

|λi|

and

ϕ2 : Pt−core → {n⃗ = (n0, . . . ,nt−1) ∈ Zt : n0 + · · ·+ nt−1 = 0}, λ̃ 7→ n⃗,

where
|λ̃| = t

∥∥n⃗∥∥2 /2+ b⃗ · n⃗, b⃗ = (0, 1, . . . , t− 1).
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Definition of ϕ2

Let λ̃ ∈ Pt−core. Define ϕ2(λ̃) = n⃗ = (n0, . . . ,nt−1) as follows:

Label the (i, j)-cell of λ̃ with j− i mod t. Add an infinite column to the
le t of λ̃ (the 0-th column) and label its cells in the same way (the
extended t-residue diagram).

A cell of the extended t-residue diagram is called exposed if it is at
the (right) end of a row. For r ∈ Z we define region r of the extended
t-residue diagram to be the set of cells such that

r(t− 1) ≤ j− i < tr

For i = 0, . . . t− 1 we define ni as the maximum number of a region
containing an exposed cell labelled i. This number is well defined
since column 0 contains infinitely many exposed cells.
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ϕ2 example

Consider λ̃ = (4, 2). Then n0 = 2, n1 = −1 and n2 = −1 (see Figure 6,
where region -1 of the extended 3-residue diagram is coloured white,
region 0 in red, region 1 in green and region 2 in blue).

2 0 1 2 0
1 2 0
0
2
1

Figure 6: Extended 3-residue diagram of the 3-core λ̃ = (4, 2).

Remark. If ϕ2(λ) = (n0, . . . ,nt−1), then ϕ2(λ
′) = (−nt−1, . . . ,−n0).
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Remark about ϕ1

The λ̃ in the formula

ϕ1(λ) = (λ̃, λ0, . . . , λt−1)

is in fact the t-core of λ. How the λi’s are defined is not important for
now.

Since hook lengths are preserved by conjugation, we note that
(̃λ′) = (λ̃)′.
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Construction of cranks



Basis

• The cases 5n+ 4, 7n+ 5 and 11n+ 6 are similar, so we focus on
7n+ 5.

• 7 partitions of 5; all of them are 7-cores:

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1

• Define

v⃗0 := ϕ2((5)) = (0, 0, 0, 0, 1, 0,−1)
v⃗1 := ϕ2((4, 1)) = (0, 0, 0, 1, 0,−1, 0)
v⃗2 := ϕ2((3, 2)) = (1, 0, 1, 0, 0,−1,−1)
v⃗3 := ϕ2((3, 1, 1)) = (0, 0, 1, 0,−1, 0, 0)
v⃗4 := ϕ2((2, 2, 1)) = (1, 1, 0, 0,−1, 0,−1)
v⃗5 := ϕ2((2, 1, 1, 1)) = (0, 1, 0,−1, 0, 0, 0)
v⃗6 := ϕ2((1, 1, 1, 1, 1)) = (1, 0,−1, 0, 0, 0, 0)
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Quadratic form

Lemma. A vector n⃗ ∈ Z7 satisfies n⃗ · 1⃗ = 0 and b⃗ · n⃗ ≡ 5 mod 7 if, and
only if, n⃗ = α0v⃗0 + · · ·+ α6v⃗6 for some α⃗ ∈ Z7 such that α⃗ · 1⃗ = 1.
Further, such an α⃗ is unique.

We have

n⃗ =



n0
n1
n2
n3
n4
n5
n6


=



α2 + α4 + α6
α4 + α5

α2 + α3 − α6
α1 − α5

α0 − α3 − α4
−α1 − α2

−α0 − α2 − α4


and thus
7
2
∥∥n⃗∥∥2+b⃗·n⃗ = 7 ‖α⃗‖2−7(α0α3+α3α6+α6α2+α2α5+α5α1+α1α4+α4α0)−2

(this number is |λ̃|)
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Proof of Ramanujan’s congruence

By a change of coordinates, one obtains

7
2
∥∥n⃗∥∥2 + b⃗ · n⃗ = 7Q(α⃗)− 2

where

Q(α⃗) = ‖α⃗‖2 −
6∑
i=0

αiαi+1

where the indices in the sum are taken mod 7.

The quadratic form Q is invariant under the 7-cycle (0 1 2 3 4 5 6) (in
fact, the automorphism group is isomorphic to D7). It has no fixed
point α⃗ (since α⃗ · 1⃗ = 1), thus each of its orbits is of cardinality 7,
proving Ramanujan’s congruence mod 7.
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Crank for 7n+ 5

A statistic which increases by 1 mod 7 on each cyclic permutation of
the coordinates of α⃗ is

b⃗ · α⃗.

This statistic satisfies the second condition of being a crank, i.e.

M(m, 7, 7n+ 5) = p(7n+ 5)
7

but not the first.
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Crank for 7n+ 5

Theorem. A crank for partitions λ of 7n+ 5 is given by the following
algorithm.

(1) Find the 7-core λ̃ of λ by the bijection ϕ1.
(2) Find ϕ2(λ̃) = n⃗.
(3) Let crank(λ) = 4n0 + 2n1 + n2 + n4 + 2n5 + 4n6 mod 7.

In fact, crank(λ) = 4+ 3b⃗ · α⃗. Since x 7→ 4+ 3x is bijective on Z/7Z,
and crank(λ) = − crank(λ′), we conclude that crank(λ) satisfies both
the conditions imposed by Dyson on his crank.
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Thanks for listening!

21


	Ramanujan's congruences
	Hooks and t-cores
	Two bijections
	Construction of cranks

