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Introduction

Background

Condensed mathematics is a recent effort by Dustin Clausen and Peter Scholze,
to resolve some foundational problems with doing algebra when the algebraic
structures in question carry a topology. One of the biggest problems is that
the category of topological abelian groups is not an abelian category; indeed,
there are numerous examples of continuous group homomorphisms that are
both monomorphisms and epimorphisms, but not isomorphisms, one simple
example being the inclusion Q ↪→ R. To resolve this, a notion of condensed
set is defined, which also extends to condensed abelian groups, modules, rings
etc. These are sheaves on a certain site of compact Hausdorff spaces. Condensed
sets include most nice topological spaces, more precisely the compactly generated
ones. Condensed abelian groups do form an abelian category, in fact a very nice
one. It satisfies all the same of Grothendieck’s AB axioms as the category of
abelian groups.

Classical notions of cohomology on compact Hausdorff spaces have been ex-
tended to cohomology internal to the topos of condensed sets. One application
of this is that one can retrieve the notion of derived hom on the bounded de-
rived category of locally compact abelian groups due to Hoffmann and Spitzweck
[HS07], by calculating derived internal homs in the much nicer derived category
of condensed abelian groups. These are the applications discussed in the present
work, but condensed sets have a variety of other applications. So far, they have
mostly been explored in the context of analytic geometry: using condensed sets,
a new notion of analytic space can be defined, which simultaneously generalises
scheme theory, complex analytic geometry, rigid analytic geometry, and real
manifolds, and simplifies and unifies some imoprtant thoerems in these subjects
(see [Sch19b], [Sch19a]).

v
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Structure

This thesis deals with the foundations of condensed mathematics as presented
in the first four lectures of [Sch19b]. In each chapter, we discuss in some detail
the prerequisites for the corresponding lecture in [Sch19b], before presenting
the main material. Some proofs are given in more detail or slightly altered,
but all the main ideas are the same. In particular, I claim no originality of
the results. It is my hope, however, that I have succeded in creating a more
accessible presentation of the foundations of condensed mathematics, along with
the prerequisites, than has previously been available.

Chapter 1 has two sections; in section 1.1 we define the sieve-theoretic notion
of sites and sheaves on them, and in section 1.2, three equivalent definitions of
condensed sets are given. It is essential in this context to use the sieve-theoretic
definition of a site; the definition using fibre products that algebraic geometers
usually get away with using is not always enough in our situation.

In chapter 2, we study abelian categories, and their derived categories, in gen-
eral (sections 2.1, 2.3, 2.4, 2.5, and 2.7) and the category of condensed abelian
groups and its derived category (sections 2.2 and 2.6). Although it soon be-
comes essential to phrase the derived theory of condensed abelian groups in the
language of ∞-categories as one progresses further, it is not necessary for the
foundations presented in this thesis. Therefore, I have opted to stay within the
familiar realm of 1-categories throughout the thesis, and define derived cate-
gories as triangulated 1-categories instead of stable ∞-categories.

Chapter 3 is all about cohomology. We begin by discussing simplicial methods at
length in section 3.1, to arrive at the notion of cohomology internal to the topos
of condensed sets. In section 3.2, this cohomology is compared to the classical
notions of sheaf and Čech cohomology on compact Hausdorff spaces.

The derived theory of chapter 2, and the cohomology theory of chapter 3, are
then applied to locally compact abelian groups (regarded as condensed abelian
groups) in chapter 4. In section 4.1 we briefly introduce topological abelian
groups and in particular locally compact abelian groups, and discuss further
the relationship between topological spaces and condensed sets. Section 4.2
introduces (very briefly) the necessary results about spectral sequences used in
section 4.3 to compute derived internal homs between locally compact abelian
groups in the condensed setting.
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Chapter 1

Sites, sheaves, and
condensed sets

In this chapter, we explain and lay the groundwork for the different equivalent
definitions of condensed sets. We present several equivalent notions of sheaves
on a site in section 1.1, preparing to deduce the concrete descriptions of con-
densed sets given in section 1.2. The definition of condensed sets and the results
presented here are due to Clausen and Scholze [Sch19b].

1.1 Sites and sheaves

1.1.1 Sieves and the sheaf condition

(1.1.1) Definition.

• Let C be a category and X an object of C. A sieve on X is a subfunctor
S of Hom(−, X), i.e. for all objects Y of C,

S(Y ) ⊂ Hom(Y,X)

and if f ∈ S(Y ) then for any g : Z → Y , f ◦ g ∈ S(Z).

• If f : Y → X is any morphism we define the pullback of S along f to be
the following sieve f∗S on Y defined by

f∗S(Z) = {g : Z → Y | f ◦ g ∈ S(Z)}.

• Let F = {fi : Xi → X}i∈I be a family of morphisms with fixed target X.
The sieve S generated by F is defined by

S(Y ) = {f : Y → X | f factors through some fi ∈ F}.

1



2 CHAPTER 1. SITES, SHEAVES AND CONDENSED SETS

(1.1.2) Definition. A presheaf of sets (or simply presheaf ) on a category C is
a functor

F : Cop → Set.

For a morphism f : U → V in C, the morphism F(f) : F(V ) → F(U) is often
denoted by f∗. For s ∈ F(V ), f∗(s) is then called the pullback of s via f . A
morphism of presheaves is a natural transformation of functors.

(1.1.3) Definition. Let C be a category, X an object of C, and F a presheaf
on C. For a morphism f , we denote by dom f its domain.

• Let S be a sieve on X. A family (xf )f∈S where xf ∈ F(dom f) is called a
matching family for the sieve S if for all f ∈ S and all morphisms g into
dom f , we have

g∗(xf ) = xf◦g.

An amalgamation for the matching family is an element x ∈ F(X) such
that

f∗(x) = xf

for all morphisms f in S.

• Let

F = {fi : Xi → X}i∈I

be a family of morphisms with target X. A matching family for F is a
family (xi)i∈I , with xi ∈ F(Xi) for all i, such that for any commutative
diagram

Y Xj

Xi X

h

fjg

fi

we have g∗(xi) = h∗(xj). An amalgamation for the matching family is an
x ∈ F(X) such that

f∗i (x) = xi

for all i ∈ I.

(1.1.4) Proposition. Let

F = {fi : Xi → X}i∈I

be a family of morphisms with target X. Suppose the fibre products Xi ×X Xj

exist for all i, j ∈ I. We want to show that a family (xi)i∈I with xi ∈ F(Xi) for
all i ∈ I is a matching family for F if and only if

π∗ij,1(xi) = π∗ij,2(xj)
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for all i, j ∈ I, where

πij,1 : Xi ×X Xj → Xi and πij,2 : Xi ×X Xj → Xj

are the projections.

Proof. Let (xi)i∈I be a matching family. Then πij,1 : Xi ×X Xj → Xi and
πij,2 : Xi×XXj → Xj satisfy the condition imposed on g and h in the definition
and it is clear that π∗ij,1(xi) = π∗ij,2(xj) for all i, j ∈ I.

Conversely, let (xi)i∈I be a family with xi ∈ F(Xi) such that

π∗ij,1(xi) = π∗ij,2(xj) for all i, j ∈ I.

Suppose g : Y → Xi and h : Y → Xj satisfy fi ◦ g = fj ◦ h. By the pullback
diagram

Y

Xi ×X Xj Xj

Xi X
fi

fj

πij,2

πij,1g

h

`

we have

g∗(xi) = `∗(π∗ij,1(xi)) = `∗(π∗ij,2(xj)) = h∗(xj)

as desired.

(1.1.5) Theorem. Let C be a category, X an object of C and F a presheaf on
C. Let S be a sieve on X. The following conditions are equivalent.

(i) The map

Nat(Hom(−, X),F)→ Nat(S,F)

induced by the inclusion S ↪→ Hom(−, X) is a bijection.

(ii) Every natural transformation η : S → F has a unique extension to a
natural transformation Hom(−, X)→ F :

S F

HomC(−, X)

η

∃!

(iii) Every matching family for S has a unique amalgamation.
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(iv) The diagram

F(X)
∏
f∈S
F(dom f)

∏
f,g f∈S

dom f=cod g

F(dom g)e a

p

is an equaliser diagram (i.e. the map e sends F(X) to the subset of the
priduct in the middle on which the maps a and p are equal). The maps
are defined as follows: for x ∈ F(X), we let e(x) = (f∗(x))f∈S . For
x = (xf )f∈S ∈

∏
f∈S F(dom f),

p(x)f,g = xf◦g, a(x)f,g = g∗(xf )

If S is generated by a family F = {fi : Xi → X}i∈I , then the conditions above
are equivalent to the following as well

(v) Every matching family for F has a unique amalgamation.

If, further, the relevant fibre products exist, the conditions above are equivalent
to:

(vi) The diagram

F(X)
∏
i∈I
F(Xi)

∏
(i,j)∈I×I

F(Xi ×X Xj)
e

p1

p2

is an equaliser diagram. The maps are defined as follows: for x ∈ F(X),

e(x) = (f∗i (x))i∈I ;

for x = (xi)i∈I ∈
∏
i∈I F(Xi),

p1(x)i,j = π∗ij,1(xi), p2(x)i,j = π∗ij,2(xj)

where πij,1 : Xi ×X Xj → Xi and πij,2 : Xi ×X Xj → Xj are the projec-
tions.

Proof. The arguments used in this proof are taken from [Joh02] and [MM94].

Since (ii) is just a reformulation of (i), we immediately have (i) ⇐⇒ (ii).

Suppose (ii) holds. We want to prove (iii). Let (xf )f∈S be a matching fam-
ily. For any object Y and f ∈ S(Y ), define η(f) = xf . This gives a natural
transformation η : S → F , since

η(f ◦ g) = xf◦g = g∗(xf ) = g∗(η(f)).
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By (ii), η has a unique extension η̃ to Hom(−, X). Let x = η̃(idX) ∈ F(X).
Then for all Y and all f ∈ S(Y ),

f∗(x) = f∗(η̃(idX)) = η̃(idX ◦f) = η̃(f) = η(f) = xf

so x is an amalgamation for the matching family. As for the uniqueness, suppose
there is another x′ ∈ F(X) such that f∗(x′) = xf for all f in S. Let

η′ : HomC(−, X)→ F

be the corresponding (via the Yoneda bijection) natural transformation, i.e.
such that x′ = η′(idX). Then for all f in S,

η′(f) = η′(idX ◦f) = f∗(η′(idX)) = f∗(x′) = xf = η(f).

Thus η′ is another natural transformation extending η, so by uniqueness of η̃,
we have η′ = η̃ and thus x′ = x.

For the converse, suppose that (iii) holds. We want to prove (ii). Let η : S → F
be a natural transformation. For any object Y and f ∈ S(Y ), let xf = η(f).
By naturality of η, this gives a matching family (xf )f∈S for S. It has a unique
amalgamation x, which by a similar argument to the one above (via Yoneda),
gives a unique extension η̃ of η to Hom(−, X).

Now (iv) is just a reformulation of (iii), so we are done with the equivalence of
the first four conditions.

Suppose then that S is generated by the family F = {fi : Xi → X}i∈I . By
proposition (1.1.4), (vi) is just a reformulation of (v) in the case that the relevant
fibre products exist, it suffices to show that (iii) and (v) are equivalent.

Suppose that (iii) holds. Let (xi)i∈I be a matching family for F . Define a
matching family (yg)g∈S for S as follows:

yg = h∗(xi)

where h and i are such that g = fi ◦ h. This is well defined (does not depend
on the choice of i and h) by the definition of a matching family.

The family (yg)g∈S is indeed a matching family because if k is any morphism
such that the compositions make sense, we have

k∗(yg) = k∗(h∗(xi)) = (h ◦ k)∗(xi) = yg◦k

because g ◦ k = fi ◦ h ◦ k.

By (iii), this matching family has a unique amalgamation y ∈ F(X), i.e. an
element satisfying g∗(y) = yg for all g ∈ S. In particular, for all i ∈ I,

f∗i (y) = yfi = xi
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so y is an amalgamation for the family (xi)i∈I . As for uniqueness, suppose that
there is another y′ ∈ F(X) such that f∗i (y′) = xi for all i. For g ∈ S, write
g = fi ◦ h. Then

g∗(y′) = h∗(f∗i (y′)) = h∗(xi) = yg

so y′ = y by uniqueness of the amalgamation for the family (yg).

Finally, suppose that (v) holds. We want to show (iii). Let (yg)g∈S be a
matching family for S. Then the subfamily (yfi)i∈I is a matching family for
F : indeed, let g : Y → Xi and h : Y → Xj be such that fi ◦ g = fj ◦ h. Then

g∗(yfi) = yfi◦g = yfj◦h = h∗(yfi).

Thus there exists a unique y ∈ F(X) such that f∗i (y) = yfi for all i. For g ∈ S,
write g = fi ◦ h. Then

g∗(y) = (fi ◦ h)∗(y) = h∗(f∗i (y)) = h∗(yfi) = yfi◦h = yg

where the second-to-last equality is just because (yg) is a matching family. We
conclude that the matching family (yg)g∈S has the unique amalgamation y as
well.

(1.1.6) Definition. If a presheaf F satisfies one of the equivalent conditions
in theorem (1.1.5), we say that F satisfies the sheaf condition with respect to
the sieve S.

1.1.2 Sites and sheaves

(1.1.7) Definition. Let C be a category. A coverage τ on C is given by speci-
fying a set Covτ (X) of covering sieves for each object X, satisfying

• If S ∈ Covτ (X) and f : Y → X, then there is a sieve R ⊂ f∗S such that
R ∈ Covτ (Y ).

The pair (C, τ) is called a site.

(1.1.8) Definition. A presheaf F on a site (C, τ) is called a sheaf if it satisfies
the sheaf condition (see theorem (1.1.5)) with respect to every covering sieve.

(1.1.9) Definition. A Grothendieck pretopology P on a category C is given, for
each object X of C, by a set CovP(X) of families {Xi → X}i∈I of morphisms,
satisfying

(1) If Y → X is an isomorphism then {Y → X} ∈ CovP(X).

(2) If {Xi → X}i∈I ∈ CovP(X) and {Yij → Xi}j∈Ji ∈ CovP(Xi) for all i ∈ I,
then the family of compositions {Yij → X}i∈I,j∈Ji ∈ CovP(X)
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(3) If {Xi → X}i∈I ∈ CovP(X) and Y → X is a morphism of C then Xi ×X Y
exists for all i and {Xi ×X Y → Y }i∈I ∈ CovP(Y ).

(1.1.10) Example. Let X be a topological space and C = OpX be the category
whose objects are the open subsets of X and whose arrows are the inclusions.
Then we obtain a natural Grothendieck pretopology P on C by defining covering
families as follows

{Ui → U} ∈ CovP(U) ⇐⇒
⋃
i∈I

Ui = U.

Then one automatically has (1) and (2). Since Ui×U V = Ui∩V in this context,
(3) follows.

(1.1.11) Definition. Let C be a category. A Grothendieck topology T on C
is given by specifying a set CovT (X) of covering sieves for each object X,
satisfying

(1) (Identity) For all objects X, Hom(−, X) ∈ CovT (X).

(2) (Base change) If S ∈ CovT (X) and f : Y → X, then f∗S ∈ CovT (Y ).

(3) (Local character) If S ∈ CovT (X) and R is a sieve on X such that

f∗R ∈ CovT (Y )

for all objects Y and all f ∈ S(Y ), then R ∈ CovT (X).

(1.1.12) Definition. Let P be a Grothendieck pretopology on a category C.
The Grothendieck topology generated by P, here denoted T , is defined as follows.
For any object X of C, let S ∈ CovT (X) if and only if the sieve S contains some
family from CovP(X).

(1.1.13) Remark. We need to show that T as in (1.1.12) is a Grothendieck
topology. Let X be an object of C. Then

Hom(−, X) ∈ CovT (X)

since it contains the family {idX} ∈ CovP(X).

For the second condition, let f : Y → X and S ∈ CovT (X). Let

{Xi → X}i∈I ∈ CovP(X)

contained in S. Then the relevant fibre products exist and

{Xi ×X Y → Y } ∈ CovP(Y ).

Also
{Xi ×X Y → Y } ⊂ f∗S
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so f∗S ∈ CovT (Y ).

Finally, suppose S contains a family {fi : Xi → X}i∈I and R is a sieve on X
satisfying the property that for all Y , for all f ∈ S(Y ), f∗R ∈ CovT (Y ). Then
in particular, for all i ∈ I there exists a family

{Yij → Xi}j∈Ji ∈ CovP(Xi)

contained in f∗i R. Then the family of compositions

{Yij → X}i∈I,j∈Ji

is in CovP(X) and contained in R, so R ∈ CovT (X).

(1.1.14) Definition. Let τ be a coverage on a category C. The Grothendieck
topology T generated by τ is defined as the intersection of all Grothendieck
topologies containing τ . More precisely, the set CovT (X) of covering sieves on
X for T is the intersection

⋂
CovT ′(X) where T ′ ranges over all Grothendieck

topologies such that every covering sieve for τ is a covering sieve for T ′.

(1.1.15) Remark. It is clear from the axioms for a Grothendieck topology that
the type of intersection of Grothendieck topologies used in definition (1.1.14) is
itself a Grothendieck topology.

(1.1.16) Remark. A Grothendieck topology T is a coverage by axiom (2)
in the definition. The Grothendieck topology generated by the coverage T is
clearly T itself.

(1.1.17) Remark. A coverage and the Grothendieck topology it generates have
the same sheaves, as lemmas (1.1.18), (1.1.19) and (1.1.20) show. This shows
that axioms (1) and (3) don’t have any effect on which presheaves are sheaves;
axiom (2) is the most important one.

(1.1.18) Lemma. Let F be a presheaf on a category C and let X be an object
of C. Then F satisfies the sheaf condition with respect to the sieve Hom(−, X)

Proof. This is immediate, for example by using the sheaf condition (i) in theorem
(1.1.5).

(1.1.19) Lemma. Let F be a sheaf on a site (C, τ). Then F satisfies the sheaf
condition with respect to any sieve S which contains a τ -covering sieve R.

Proof. Let (xf )f∈S be a matching family for S. Then (xf )f∈R is a matching
family for R which by assumption has a unique amalgamation x ∈ F(X) (S
and R are sieves on X). We want to show that x is an amalgamation for S. Let
f ∈ S(Y ). Then f∗R contains a τ -covering sieve T of Y . Define a matching
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family (yk)k∈T for T by yk = xf◦k. Then k∗(xf ) = xf◦k = yk so xf is the
unique amalgamation for (yk). Since f ◦ k ∈ R, we further have that

yk = xf◦k = (f ◦ k)∗(x) = k∗(f∗(x))

so f∗(x) is another amalgamation for (yk). By uniqueness, f∗(x) = xf , showing
that x is an amalgamation for (xf )f∈S . Uniqueness is clear because of unique-
ness for (xf )f∈R.

(1.1.20) Lemma. Let F be a sheaf on a site (C, τ). Let S be a τ -covering sieve
on an object X of C and R another sieve on X such that for all f ∈ S, f∗R is a
τ -covering sieve of dom f . Then F satisfies the sheaf condition with respect to
R.

Proof. Let’s first show that F satisfies the sheaf axiom for the sieve T on X
consisting of the composites f◦h where f ∈ S and h ∈ f∗R. Let (xf◦h)f∈S,h∈f∗R
be a matching family for T . Fix an f ∈ S and let yh = xf◦h. Then (yh)h∈f∗R is a
matching family for f∗R and so has a unique amalgamation which we denote zf .
This defines a matching family (zf )f∈S which then has a unique amalgamation
x ∈ F(X). Clearly, x is also an amalgamation for (xf◦h) defined above. For
uniqueness, suppose that x′ is another amalgamation. Let f ∈ S. Then for all
h ∈ f∗R,

h∗(f∗(x′)) = (f ◦ h)∗(x′) = xf◦h = yh

and by uniqueness of zf , we have f∗(x′) = zf . This holds for all f ∈ S, and by
uniqueness of x, we conclude that x′ = x.

Now we show that F satisfies the sheaf condition with respect to R. We first
show that T = R ∩ S. It is clear that T ⊂ R and T ⊂ S. If g ∈ R ∩ S,
then g∗R = Hom(−,dom g) and we can write g = f ◦ h with f = g ∈ S and
h = iddom g ∈ g∗R.

So let (xg)g∈R be a matching family for R. Then (xg)g∈T is a matching family
for T with unique amalgamation x ∈ F(X). Let g ∈ R. Then g∗S contains
a τ -covering sieve, and by lemma (1.1.19), F satisfies the sheaf condition with
respect to g∗S = g∗(R ∩ S) = g∗T . Define a matching family (yk)k∈g∗T for
g∗T by yk = xg◦k. Then both xg and g∗(x) are amalgamations for this family
(same argument as in the proof of lemma (1.1.19)) and we conclude that x is
an amalgamation for (xg)g∈R; uniqueness is clear.

(1.1.21) Remark. As theorem (1.1.5) shows, it is sometimes easier to work
with families generating sieves than the sieves themselves, which is the motiva-
tion behind Definition (1.1.22).

(1.1.22) Definition. Let C be a category. A precoverage π on C is given by
specifying a set Covπ(X) of covering families {Xi → X}i∈I of morphisms with
target X, satisfying the following condition
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• If {fi : Xi → X}i∈I ∈ Covπ(X) and g : Y → X is any morphism, then
there exists a {hj : Yj → Y }j∈J ∈ Covπ(Y ) such that each g ◦ hj factors
through an fi.

(1.1.23) Remark. A coverage is just a precoverage for which every covering
family is a sieve:

Proof. Let τ be a coverage. Let S ∈ Covτ (X) be a covering sieve and let
g : Y → X be a morphism. Then g∗S contains an R ∈ Covτ (Y ), and for every
h ∈ R, g ◦ h ∈ S, in particular factors through a morphism in S. This proves
that τ is a precoverage. Conversely, suppose we have a precoverage π for which
every covering family is a sieve. Then let S ∈ Covτ (X) and let g : Y → X be
any morphism. Let R = {hj : Yj → Y }j∈J ∈ Covπ(Y ) be such that each g ◦ hj
factors through an f ∈ S. Then we can write g ◦ hj = f ◦ k ∈ S, and thus
hj ∈ g∗S for all j, so π is a coverage.

(1.1.24) Remark. There doesn’t seem to be a standard terminology for the dif-
ferent types of coverages defining a site. Sometimes what we call a Grothendieck
pretopology is called a Grothendieck topology, what we call a coverage is called
a sifted coverage while our precoverages are called coverages. Johnstone [Joh02]
avoids the term topology altogether and talks about Grothendieck coverages
instead of Grothendieck topologies.

(1.1.25) Definition. The coverage generated by a precoverage π is the coverage
whose covering sieves are those generated by the covering families in π.

(1.1.26) Definition. The Grothendieck topology generated by a precoverage is
the Grothendieck topology generated by the coverage generated by said precov-
erage.

(1.1.27) Remark. A Grothendieck pretopology is a precoverage: Indeed, ax-
iom (3) in the definition of a pretopology gives the desired family. We prove here
below that the notions of a Grothendieck topology generated by a pretopology
in the sense of Definition (1.1.12) and in the sense of Definition (1.1.26) are the
same.

Proof. Let P be a Grothendieck pretopology. Let τ be the coverage generated
by the precoverage P and T the Grothendieck topology generated by τ . Let T ′
be the Grothendieck topology generated by the pretopology P, i.e. the collection
of sets CovT ′(X) of sieves on X such that each sieve in CovT ′(X) contains a
family from CovP(X).

Let S ∈ CovT ′(X) and let F ∈ CovP(X) such that F ⊂ S. Let S′ be the
sieve generated by F . Then S′ ∈ Covτ (X) and thus S′ ∈ CovT (X). For any
f ∈ S′ ⊂ S, f∗S = Hom(−,dom f) ∈ CovT (dom f). Thus S ∈ CovT (X), so we
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have T ′ ⊂ T .

We know that τ ⊂ T ′, and this implies T ⊂ T ′ and we are done.

(1.1.28) Corollary. Let C be a category and F a presheaf on C. Suppose we
have a Grothendieck topology T on C, generated by a precoverage π. Then to
check that F is a sheaf for T , it suffices to check the sheaf condition on the
covering families from π.

(1.1.29) Sheafification. Let C be a category equipped with a Grothendieck
pretopology P. The inclusion functor i : Sh(C) ↪→ Fun(Cop,Set) of the category
of sheaves on the site C in the presheaf category, admits a left adjoint F 7→ F#.
The sheaf F# is called the sheafification of F . See [Sta21, Section 00W1], in
particular [Sta21, Tags 00WB, 00WG, 00WH].

(1.1.30) Topoi. Condensed sets form a so-called topos. The word “topos” is
Greek for “place” and Grothendieck thought of a topos as a category that serves
as a plave to do mathematics (see [Bae21]). We will not go into the details of
topos theory, but we give the definition:

• A topos is the category Sh(C) of sheaves on a site C.

• Let C and D be sites. A morphism of topoi f : Sh(D) → Sh(C) is given
by an adjoint pair (f−1, f∗) of functors

f−1 : Sh(C)→ Sh(D), f∗ : Sh(D)→ Sh(C),

i.e.

HomSh(D)(f
−1G,F) = HomSh(C)(G, f∗F)

bifunctorially in F ,G. Additionally, we impose that f−1 commute with
finite limits, i.e. is left exact. We define the composition f ◦ g of two
morphisms of topoi f : Sh(D) → Sh(C) and g : Sh(E) → Sh(D) as the
morphism of topoi given by (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)−1 = g−1 ◦ f−1

1.2 Condensed sets

1.2.1 Sites of compact Hausdorff spaces

(1.2.1) A smallness condition. From now on, we fix an uncountable strong
limit cardinal κ. This means that κ has the following property: for any cardinal
λ < κ, we have 2λ < κ. Denote by CHaus the category of κ-small (i.e. of cardi-
nality < κ) compact Hausdorff spaces and continuous maps. We will consider
two subcategories of CHaus: Prof and ED (defined below). We will notably be
able to take Stone-Čech compactifications without having to worry about our
sets becoming so large as to leave CHaus.

https://stacks.math.columbia.edu/tag/00W1
https://stacks.math.columbia.edu/tag/00WB
https://stacks.math.columbia.edu/tag/00WG
https://stacks.math.columbia.edu/tag/00WH
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(1.2.2) Definition. A profinite set is a cofiltered limit of finite sets (viewed
as discrete spaces) in the category of topological spaces. See Appendix A for
conventions for limits.

(1.2.3) Remark. By [Sta21, Lemma 08ZY], the category of profinite sets is
equivalent to the category of totally disconnected compact Hausdorff spaces.
We denote the category of κ-small profinite sets by Prof.

(1.2.4) Definition. A topological space S is called extremally disconnected
if the closure of every open set is open. If S is a compact Hausdorff space,
an equivalent definition due to Gleason (see [Gle58]) is the following: every
surjection S′ → S from a compact Hausdorff space splits (i.e. has a continuous
right inverse).

(1.2.5) Proposition. An extremally disconnected Hausdorff space S is totally
disconnected.

Proof. Let x ∈ S and denote C(x) its connected component. Take any y ∈ S
such that y 6= x. We want to show that y /∈ C(x). Since S is Hausdorff, we
can take an open neighborhood U of x such that y /∈ U . Since S is extremally
disconnected, U ∩ C(x) is open and closed and thus equal to C(x). Therefore,
y /∈ C(x) and we conclude that C(x) = {x}, as desired.

(1.2.6) Notation. The category of κ-small extremally disconnected compact
Hausdorff spaces will be denoted ED.

(1.2.7) Example. The Stone-Čech compactification βS of a discrete set S is
extremally disconnected.

Proof. Indeed, the universal property of the Stone-Čech compactification of S
is the following: We have a compact Hausdorff space βS and a dense inclusion
i : S ↪→ βS such that for any compact Hausdorff space K and continuous
f : S → K, there is a unique βf : βS → K such that (βf) ◦ i = f .

Now take a compact Hausdorff space S′ and surjection g : S′ → βS. Define
f : S → S′ as any set-theoretic right inverse of g (i.e. for any x ∈ S, we pick
f(x) to be any y such that g(y) = x). This f is automatically continuous
since S is discrete, and thus extends uniquely to a βf : βS → S′. We have
g ◦ βf ◦ i = g ◦ f = idS , but since S is dense in βS, we have g ◦ βf = idβS .

(1.2.8) Example. Let S be a compact Hausdorff space and denote by Sδ the
set S with the discrete topology. We have that idS : Sδ → S is continuous
and thus we have β idS : βSδ → S such that (β idS) ◦ i = idS , thus β idS is a
surjection onto S from an extremally disconnected set.

https://stacks.math.columbia.edu/tag/08ZY
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(1.2.9) Remark. We have an inclusion of categories

ED ⊂ Prof ⊂ CHaus

and we want to make each one into a site. First, we need some topological
properties of these categories.

(1.2.10) Proposition. Let C be any one of the three categories in (1.2.9).
Then we have the following

(1) For any S ∈ C and any closed subspace R ⊂ S, we have R ∈ C.

(2) Any map f : S → R in C is closed.

For C = Prof or C = CHaus, we further have

(3) For maps f1 : S1 → S and f2 : S2 → S in C, the fibre product S1 ×S S2 is
in C.

Proof. (1) A subspace of a Hausdorff space is Hausdorff. A closed subspace of
a compact Hausdorff space is compact. So the statement is true for CHaus.
Moreover, a subspace of a totally disconnected space is obviously totally
disconnected so the statement is true for Prof. If S ∈ ED and R ⊂ S
is closed, we take an open U ⊂ R. There is an open U ′ ⊂ S such that

U = R ∩ U ′. We want to show that the closure U
R

of U in R is open in R.
Since R is closed in S, we have

U
R

= U ′ ∩R

and since U ′ is open in S, this is open in R.

(2) Since the continuous image of a compact space is compact, and a subspace
of a compact Hausdorff space is compact if and only if it is closed, this is
clear.

(3) It suffices to show that S1 × S2 is in C and that

S1 ×S S2 = {(x, y) ∈ S1 × S2 | f1(x) = f2(y)}

is a closed subspace. We know that S1 × S2 is compact Hausdorff if S1

and S2 are. Suppose S1 and S2 are totally disconnected. Since the con-
nected components in a product space are the products of the connected
components, this is clear. Since the diagonal is closed in S × S (because S
is Hausdorff), and the fibre product is the preimage of it by the continuous
map S1 × S2 → S × S, (x, y) 7→ (f1(x), f2(y)), we are done.
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(1.2.11) Definition. A family of maps {Si → S}i∈I is called jointly surjective
if the induced map ∐

i∈I
Si → S

is surjective.

(1.2.12) Proposition. Let C be any one of the three categories in remark
(1.2.9). Then the finite jointly surjective families in C form a precoverage. We
denote the Grothendieck topology which it generates, by T .

Proof. Let {fi : Si → S}i∈I be a finite jointly surjective family. Let g : R → S
be any continuous map.

In the case where C = CHaus or C = Prof, we consider the family

{R×S Si → R}i∈I .

It is jointly surjective and each member composed with g factors through an fi
by definition of the fibre product.

Now consider the case where C = ED. Let Ri := g−1(fi(Si)). Then Ri ∈ C for
all i because the fi are closed and g is continuous. Moreover, R =

⋃
Ri and

thus the inclusions Ri ↪→ R form a finite jointly surjective family. It suffices to
show that each g|Ri factors through fi. For each i, the map fi : Si → fi(Si) is a
surjection in ED and thus has a section hi : fi(Si)→ Si. Then gRi = fi◦hi◦g|Ri
factors through fi.

(1.2.13) Proposition. Let C be as in proposition (1.2.12). Then the the
collection of all families of the following two types forms a precoverage on C:

1. {fi : Si → S}i∈I such that I is finite and the induced
∐
i∈I Si → S is an

isomorphism and,

2. singleton families {p : S′ → S} where p : S′ → S is surjective.

Moreover, this precoverage generates the same Grothendieck topology T .

Proof. Let g : R → S be any morphism. The proof of proposition (1.2.12)
dealt with the case of families of type 2. For {fi : Si → S} a family of type
1, we let Ri = g−1(fi(Si)). Since fi is an homeomorphism Si → fi(Si), a
similar argument to the one for ED in proposition (1.2.12) shows that the family
of inclusions {Ri → R} has the desired property of the compositions with g
factoring through an fi.

Denote this precoverage by π1. We want to show that the Grothendieck topology
T is generated by π1. Denote by π2 the precoverage from proposition (1.2.12)
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and by T1 the Grothendieck topology generated by π1. We clearly have π1 ⊂ π2,
so T1 ⊂ T . Now let Z ∈ CovT (S) be a sieve on S ∈ C generated by a finite
jointly surjective family {fi : Si → S}. Denote by

f :
∐
i∈I

Si → S

the map induced by the fi and for each j ∈ I, let

ϕj : Sj ↪→
∐
i∈I

Si

be the inclusion. For each i,

f ◦ ϕi = fi ∈ Z, so ϕi ∈ f∗Z.

Therefore,

f∗Z ∈ CovT1

(∐
i∈I

Si

)

and further, for any map h into
∐
i∈I Si,

h∗(f∗Z) ∈ CovT1

(∐
i∈I

Si

)
,

by the base change axiom for Grothendieck topologies. Denote the sieve gen-
erated by {f} by Zf . We have Zf ∈ CovT1(S). For any g ∈ Zf (R), write
g = f ◦ h. Then

g∗Z = (f ◦ h)∗Z = h∗(f∗Z) ∈ CovT1

(∐
i∈I

Si

)
.

By the local character of Grothendieck topologies, this implies that Z ∈ CovT1(S).
We conclude that T ⊂ T1, and we are done.

1.2.2 Condensed sets

(1.2.14) Definition. A condensed set is a sheaf of sets on any of the sites
ED, Prof or CHaus, with the covering families given by finite jointly surjective
families.

(1.2.15) Remark. theorem (1.2.16) shows that condensed sets (1.2.14) are well
defined. theorems (1.2.17) and (1.2.18) give a nice characterisation of condensed
sets and help us prove theorem (1.2.16). All three theorems are proved in
subsection 1.2.3.
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(1.2.16) Theorem. Let Sh(C) denote the category of sheaves on a site C. The
restriction functors

Sh(CHaus)→ Sh(Prof)→ Sh(ED)

are equivalences of categories.

(1.2.17) Theorem. Let C be one of the sites CHaus or Prof. Then a presheaf
T on C is a sheaf if and only if it satisfies the following two conditions.

(i) For any finite collection (Si)i∈I of objects of C, the natural map

T

(∐
i∈I

Si

)
→
∏
i∈I

T (Si)

is a bijection.

(ii) For any surjection S′ → S of objects of C, let p1 and p2 denote the two
projections S′ ×S S′ → S′. Then the map

T (S)→ {x ∈ T (S′) | p∗1(x) = p∗2(x) ∈ T (S′ ×S S′)}

is a bijection.

(1.2.18) Theorem. A presheaf T on ED is a sheaf if and only if it satisfies the
following condition

(i) For any finite collection (Si)i∈I of objects of ED, the natural map

T

(∐
i∈I

Si

)
→
∏
i∈I

T (Si)

is a bijection.

We prove these three theorems in subsection 1.2.3.

(1.2.19) Underlying set and associated condensed set. Given a con-
densed set T , we call the set T (∗) its underlying set.

Let T be a topological space. Then the functor T sending each profinite set S
to the set of continuous maps S → T is a condensed set. This is clear by the
characterisation of condensed sets as sheaves on the site ED (we only need to
show that

T (S1 t S2) = T (S1)× T (S2)

which is just the univsersal property of the coproduct). This T is called the
condensed set associated to T .

The functor T 7→ T from topological spaces to condensed set is fully faith-
ful when restricted to a certain subcategory (of so-called compactly generated
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spaces). In this case it is also possible to equip the underlying set of any con-
densed set with a topology in such a way that T 7→ T (∗) becomes left adjoint
to the associated condensed set functor. This will not become important until
chapter 4 and will be discussed in more detail there.

1.2.3 Proofs

Proof of theorems (1.2.17) and (1.2.18). A sieve of type 1 will in this proof
mean a sieve generated by a finite family {Si → S}i∈I such that

∐
i∈I Si → S

is an isomorphism. A sieve of type 2 will then mean a sieve generated by a
singleton family {S′ → S} with S′ → S a surjection. We will show that T
satisfies (i) if and only if it satisfies the sheaf condition with respect to every
sieve of type 1 (in any one of the three sites).

Any sieve of type 2 in ED is of the form Hom(−, S) (every map into S factors
through the surjection S′ → S by composing with its right inverse), and since
any presheaf satisfies the sheaf condition with respect to that sieve, this will
suffice to prove theorem (1.2.18).

To finish the proof of theorem (1.2.17) we will go on to show that in Prof and
CHaus, T satisifies (ii) if and only if it satisfies the sheaf condition with respect
to every sieve of type 2.

Now let {Si → S}i∈I be a family of the first type. We can assume that

S =
∐
i∈I

Si

and that the maps Si → S are the inclusions. Then in all the three sites, the
fibre products Si ×S Sj exist: if i = j then it is equal to Si, if not it is empty.
Then the two parallel maps in the equaliser diagram in condition (vi) of theorem
(1.1.5) are the identity, which means that it is equivalent to

T

(∐
i∈I

Si

)
=
∏
i∈I

T (Si).

Now we are done with theorem (1.2.18).

Moving on to any of the sites Prof or CHaus, we see that for sieves of type 2,
condition (vi) in theorem (1.1.5) is equivalent to (ii) in (1.2.17), which says that
T (S) is the equaliser of the two arrows T (S′)→ T (S′ ×S S′).

Proof of theorem (1.2.16). It suffices to show that the value of a sheaf on CHaus
is uniquely determined by its restriction to profinite sets, and that the value of
a sheaf on Prof is uniquely determined by its restriction to extremally discon-
nected sets.
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For the first statement, let S be a compact Hausdorff space and S′ → S a
surjection from a profinite set (for example the Stone-Čech compactification of
S viewed as a discrete set). Then by condition (ii) in theorem (1.2.17), T (S) is
determined by its values on the profinite sets S′ and S′ ×S S′.

For the second, let S be a profinite set and S̃ → S a surjection from an ex-
tremally disconnected set (for example the Stone-Čech compactification of S

viewed as a discrete set). Further, let ˜̃S → S̃ ×S S̃ be a surjection from an ex-

tremally disconnected set. Since T (S̃×S S̃)→ T ( ˜̃S) is injective (it is a bijection
onto a subset of the latter by (ii)), T (S) is determined as the equaliser of the

two maps T (S̃) → T ( ˜̃S), i.e. by its values on the two extremally disconnected
sets.



Chapter 2

Condensed abelian groups
and their derived
category

In this chapter, we prove that the category of condensed abelian groups is a re-
markably nice abelian category, in particular generated by compact projectives.
In section 2.1, we recall the definition of an abelian category and some of its
properties. We move to the condensed setting in section 2.2 where we prove
that CondAb satisfies all the same of Grothendieck’s axioms for abelian cate-
gories as the category of abelian groups, as well as proving that it is generated
by compact projectives. Going back to the general setting, we discuss derived
categories and derived functors quite extensively in sections 2.3, 2.4, and 2.5.
This is all to prepare for going back to the condensed setting and defining the
derived category of condensed abelian groups in section 2.6. We end the chapter
in section 2.7 with a short discussion about derived limits and colimits, which
belongs in this chapter, although it is not used until chapter 4.

2.1 Abelian categories

(2.1.1) Definition. A category A is called preadditive if all the hom sets
HomA(A,B) have an abelian group structure, such that all the composition
maps

HomA(B,C)×HomA(A,B)→ HomA(A,C)

are bilinear. Further, a functor between preadditive categories is called additive
if the induced maps on hom sets are group homomorphisms.

19



20 CHAPTER 2. CONDENSED ABELIAN GROUPS

(2.1.2) Proposition. Let A be an object of a preadditive category A. The
following are equivalent.

(i) A is an initial object of A

(ii) A is a final object of A

(iii) idA ∈ HomA(A,A) is zero

If this is the case, A is called a zero object of A.

Proof. Straightforward. See for example [Sta21, Lemma 00ZZ].

(2.1.3) Proposition. Let A,B be objects of a preadditive category A. If one of
A×B,AtB exists, then so does the other, and in this case they are isomorphic,
via the map

A tB → A×B

induced by (idA, 0) : A→ A×B and (0, idB) : B → A×B.

We then denote the co/product by A⊕B and call it the direct sum.

Proof. See [Sta21, Lemma 0101].

(2.1.4) Remark. An additive functor between preadditive categories preserves
direct sums and zero objects.

(2.1.5) Definition. A preadditive category A is called additive if it has all
finite direct sums and a zero object.

(2.1.6) Remark. Infinite coproducts and products do not agree. The term
direct sum in an additive category refers to coproducts in the infinite case.

(2.1.7) Definition. Let f : A → B be a morphism in a preadditive category
A.

(i) A kernel of f is a morphism denoted i : Ker(f) → A such that f ◦ i =
0, universal with respect to this property (the notation is justified: by
universality, the kernel is unique up to isomorphism).

(ii) A cokernel of f is a morphism denoted p : B → Coker(f) such that
p ◦ f = 0, universal with respect to this property.

(iii) If f has a kernel, then a coimage of f is a cokernel of Ker(f) → A. It is
denoted A→ Coim(f).

https://stacks.math.columbia.edu/tag/00ZZ
https://stacks.math.columbia.edu/tag/0101


2.1. ABELIAN CATEGORIES 21

(iv) If f has a cokernel, then an image of f is a kernel of B → Coker(f). It is
denoted Im(f)→ B.

(2.1.8) Remark. It is easy to check that kernels and images are monomor-
phisms, and that cokernels and coimages are epimorphisms. Using this fact and
the universal properties, one deduces a canonical decomposition of f : A → B
as

A→ Coim(f)→ Im(f)→ B

(if the coimage and image exist).

(2.1.9) Definition. A category is called abelian if it is additive, all kernels and
cokernels exist and for every morphism f , the canonical map

Coim(f)→ Im(f)

is an isomorphism.

(2.1.10) Exactness, projectives, and injectives.

• In an abelian category, one can define injective and surjective morphisms
to be those whose kernel (resp. cokernel) is zero. In fact, injective mor-
phisms are precisely the monomorphisms and surjective morphisms are
precisely the epimorphisms.

• In an abelian category one defines complexes and exact sequences in pre-
cisely the same way as in a category of modules. The definition of an
abelian category contains the exact amount of generality needed to prove
results such as the snake lemma, five lemma and long exact sequence in
(co)homology. We will discuss complexes in more detail later in this chap-
ter.

• An additive functor F between abelian categories is right exact, resp. left
exact, resp. exact if for every exact sequence

0→ X → Y → Z → 0,

the sequence
F (X ′)→ F (Y )→ F (Z ′)→ 0,

resp.
0→ F (X ′)→ F (Y )→ F (Z ′),

resp.
0→ F (X ′)→ F (Y )→ F (Z ′)→ 0,

is exact, where (X ′, Z ′) = (X,Z) or (Z,X) depending on whether F is co-
or contravariant. This exactness terminology agrees with the one defined
for general functors in (A.1.8). Moreover, left or right exactness in the
sense of (A.1.8) implies additivity. See [Sta21, Lemma 010N] for a proof.

https://stacks.math.columbia.edu/tag/010N
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• We say that an object P in an abelian category A is projective if the
functor HomA(P,−) is exact, i.e. preserves epimorphisms (surjections).
Similarily, an object I is injective if the functor HomA(−, I) is exact,
i.e. preserves monomorphisms (injections).

(2.1.11) Abelian is a structural property. The property of being abelian
can be phrased as follows: A category A is abelian if and only if it satisfies the
following properties

(i) There exists a zero object 0 in A. [Recall that a zero object is defined as
an object which is both initial and final. If a zero object 0 exists, then
there is a unique map A→ 0 and a unique map 0→ B. The composition
of these is denoted 0 ∈ HomA(A,B) and called the zero morphism.]

(ii) For all objects A,B in A, their product and coproduct exists, and the map

A tB → A×B,

defined as (idA, 0) on A and (0, idB) on B, is an isomorphism.

(iii) Every morphism in A has a kernel and cokernel.

(iv) The canonical map from the coimage to the image of every morphism is
an isomorphism.

Indeed, (i) and (ii) are equivalent to giving an additive structure on A (see next
paragraph), while (iii) and (iv) are the additional conditions required in the
definition of an abelian category.

Suppose we have (i) and (ii). Then we have all finite products, so we only need
to deduce an abelian group structure on the hom sets. Denote, for all A,B,

ϕA,B : A×B → A tB

the inverse to the isomorphism

A tB → A×B.

Let

∆ : A→ A×A

be the diagonal and let

π : B tB → B

be the morphism induced by (idB , idB). Let f, g ∈ HomA(A,B). Define

f + g : A→ B
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as the composition

A A×A B ×B B tB B∆ (f,g) ϕB,B π

This data endows HomA(A,B) with an abelian group structure, where the iden-
tity is given by the zero morphism defined above (see [Lur17, Definition 1.1.2.1]).

The converse is given by proposition (2.1.3).

We note that the properties (i)-(iv) are all statements of the type: some limit
or colimit exists or has a certain property, or something is a limit or colimit. In
particular, no extra structure is defined on the category as the original definition
of abelian category might suggest (equipping the hom sets with an abelian group
structure).

2.2 Condensed abelian groups

(2.2.1) Definition. A condensed abelian group is a sheaf of abelian groups on
one of the sites ED,Prof,CHaus. The category of condensed abelian groups is
denoted CondAb.

(2.2.2) We use the following characterisation of condensed abelian groups: A
condensed abelian group is a presheaf T from ED to abelian groups, taking
finite disjoint unions to the corresponding finite products.

(2.2.3) Theorem. All limits and colimits exist in CondAb. Moreover, they
are formed objectwise on extremally disconnected sets.

(2.2.4) Remark. The theorem is saying that the value of the limit or colimit
of a functor I → CondAb, i 7→ Mi, at an extremally disconnected set S, is the
limit or colimit in the category of abelian groups of the functor i 7→ Mi(S).
This is not necessarily true for any profinite S.

Proof of theorem (2.2.3). Let I → CondAb, i 7→ Mi be a functor. We know
that lim−→i

Mi and lim←−iMi exist in the presheaf category Fun(EDop,Ab) and are
computed objectwise, i.e.

(lim−→
i

Mi)(S) = lim−→
i

Mi(S)

(lim←−
i

Mi)(S) = lim←−
i

Mi(S)

(this is a general categorical fact, see e.g. [nLa21] for a proof). Since limits
and colimits commute with finite products in Ab (because a finite product is
a finite direct sum in the category of abelian groups, i.e. both a limit and a
colimit, and limits commute with limits and colimits commute with colimits in
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all categories), we obtain

(lim−→
i

Mi)

 n∐
j=1

Sj

 = lim−→
i

Mi

 n∐
j=1

Sj


= lim−→

i

 n∏
j=1

Mi(Sj)


=

n∏
j=1

lim−→
i

Mi(Sj)

=

n∏
j=1

(lim−→
i

Mi)(Sj)

which means that lim−→i
Mi ∈ CondAb as desired. The corresponding result for

lim←−iMi is obtained in the exact same way.

(2.2.5) Corollary. The category of condensed abelian groups is an abelian
category satisfying the following additional properties

(AB3) All colimits exist.

(AB3∗) All limits exist.

(AB4) Direct sums are exact.

(AB4∗) Products are exact.

(AB5) Filtered colimits are exact

(AB6) For any index set J and filtered categories Ij , j ∈ J , with functors i 7→Mi

from Ij to condensed abelian groups, the natural map

lim−→
(ij∈Ij)j

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism.

Proof. These are all results about limits and colimits that are true in the cate-
gory of abelian groups (by remark (2.1.11), the property of being abelian can be
phrased in terms of statements about limits and colimits). By theorem (2.2.3),
we deduce them for CondAb.

(2.2.6) Theorem. The category CondAb is generated by compact projective
objects.



2.2. CONDENSED ABELIAN GROUPS 25

(2.2.7) Remark. We recall some terminology:

• A category C is generated by E ⊂ Ob C if for any pair of distinct morphisms
f, g : X → Y there exists an object U ∈ E and morphism h : U → X such
that f ◦ h 6= g ◦ h.

• An object P is projective if Hom(P,−) preserves epimorphisms.

• An object P is compact if Hom(P,−) commutes with filtered colimits.

Proof of theorem (2.2.6). The forgetful functor from condensed abelian groups
to condensed sets preserves limits. Since the categories involved are essentially
small, and condensed abelian groups admit all limits, the adjoint functor the-
orem (theorem (A.2.3)) implies that it has a left adjoint T 7→ Z[T ] (this is
the sheafification of S 7→ Z[T (S)]). For an extremally disconnected set S and
condensed abelian group M , we have

HomCondAb(Z[S],M) ' HomCondSet(S,M) (adjunction)

' HomCondSet(HomED(−, S),M) (by definition)

'M(S) (by Yoneda)

Since M 7→M(S) commutes with all limits and colimits, and preserves epimor-
phisms, we conclude that Z[S] is compact and projective for every extremally
disconnected set S.

Take a condensed abelian group M and consider the set of all extremally dis-
connected sets S with a map f : Z[S]→M and consider the induced map

h :
⊕

Z[S]→M

We want to show that this is surjective. Take an extremally disconnected set S
and x ∈ M(S). The corresponding f ∈ Hom(Hom(−, S),M) (via the Yoneda
bijection) has x in its image by definition (x = f(idS)). Therefore h is surjective.
If we have ϕ,ψ : M → M ′ a pair of distinct morphisms in CondAb, we have
ϕ◦h 6= ψ◦h since h is an epimorphism. This implies that one of the f : Z[S]→M
separates ϕ and ψ, as desired.

(2.2.8) Corollary. The category CondAb has enough projectives.

Proof. These are given by direct sums of the compact projectives Z[S] for ex-
tremally disconnected S.

(2.2.9) CondAb is a Grothendieck category. A Grothendieck category
(first introduced by Grothendieck in his Tohoku paper [Gro57], see also [KS06,
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Definition 8.3.24]) is an abelian category A satisfying (AB3) and (AB5), pos-
sessing a generator (meaning a single object generating the whole category).

Taking the direct sum of all Z[S], we see that CondAb has a generator, and
thus is a Grothendieck category. As we will see later, Grothendieck categories
provide a nice setting for defining derived functors. By [KS06, Theorem 9.2.6],
the category CondAb has enough injectives.

(2.2.10) Remark. The characterisation of CondAb as sheaves on the site ED
is the essential ingredient in all of the above. The extremally disconnected sets
provide the compact projectives that generate CondAb, so it is really the fact
that CondAb is generated by compact projectives that makes it such a nice
abelian category.

(2.2.11) Remark. The category CondAb as defined in [Sch19b, Appendix
to Lecture II] is not a Grothendieck category and in fact does not even have
enough injectives. Thus (2.2.9) is a result that relies on the smallness condition
we impose on our objects.

(2.2.12) Tensor product. Let M,N be two condensed abelian groups. We
define the condensed abelian group M ⊗N as the sheafification of the presheaf
which takes an extremally disconnected S to the usual tensor product in abelian
groups M(S)⊗N(S). This defines what is called a symmetric monoidal tensor
product on CondAb. In particular, there are natural isomorphisms

M ⊗N → N ⊗M and M ⊗ (N ⊗ P )→ (M ⊗N)⊗ P,

among other properties. The tensor product satisfies the following properties:

• It represents bilinear maps. This means that we have the usual universal
property for the tensor product: bilinear maps

M ×N → P

correspond to morphisms
M ⊗N → P.

This follows from the corresponding result about abelian groups.

• For T a condensed set, Z[T ] is flat with respect to this tensor product.
This follows from the fact that Z[T (S)] is free and thus flat as an abelian
group.

• For condensed sets T1, T2, we have Z[T1 × T2] = Z[T1]⊗ Z[T2].

(2.2.13) Internal hom. Since the functor −⊗A (for A a fixed abelian group)
commutes with colimits in abelian groups, the presheaf that the tensor product
in CondAb is the sheafification of, commutes with colimits. More precisely, the
endofunctor of presheaves of abelian groups on the site ED which takes N to the
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presheaf S 7→ N(S)⊗M(S), for M a fixed condensed abelian group, commutes
with colimits. This follows from the corresponding fact, stated above, in abelian
groups, since colimits are computed objectwise in the presheaf category. Since
sheafification is a left adjoint, we conclude that −⊗M commutes with colimits
in CondAb. Thus it has a right adjoint, which we denote Hom(M,−) and call
the internal hom. It satisfies the adjunction formula

HomCondAb(N ⊗M,P ) ' HomCondAb(N,Hom(M,P ))

by definition. More concretely, we use Yoneda to conclude that for any ex-
tremally disconnected S,

Hom(M,N)(S) = HomCondSet(S,Hom(M,N))

= HomCondAb(Z[S],Hom(M,N))

= HomCondAb(Z[S]⊗M,N).

The above shows that the underlying abelian group of the internal hom is the
usual hom.

(2.2.14) More on compact projectve generation. The following two re-
sults are taken from [Gin05]. In (2.2.7), we defined a compact object of a
category C to be an object P such that Hom(−, P ) commutes with filtered col-
imits. A characterisation in abelian categories that reminds of the topological
term is given as follows:

• An object P in an abelian category A is compact if and only if for any
collection (Mi)i∈I and map

f : P →
⊕
i∈I

Mi,

there is a finite set J ⊂ I such that Im f is a subobject of
⊕

i∈JMi.

The following is a nice result about abelian categories of which CondAb is only
a slight generalisation.

• If an abelian categoryA is generated by a single compact projective object,
thenA is equivalent to the category of left R-modules for a (not necessarily
commutative) ring R.

In the case of CondAb, the situation is not quite as nice, but there is only the
slight generalisation that our category has a set of compact projective generators
(or equivalently a single projective generator, given by their direct sum).
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2.3 The derived category

2.3.1 As a category of complexes

(2.3.1) Definition. Let A be an abelian category. A cochain complex (or
simply complex ) A• in A is given by a collection of objects (An) indexed by
Z and for each n a morphism dn : An → An+1, called a differential, such that
d ◦ d = 0. A morphism of complexes f : A• → B• is a collection of morphisms
(fn : An → Bn) commuting with the differentials (f ◦ d = d ◦ f , omitting
the indices). We denote the category of complexes in A with morphisms of
complexes by CoCh(A).

(2.3.2) Definition. Let A be an abelian category. Let f, g : A• → B• be two
morphisms of complexes in CoCh(A). A collection h of morphisms

hn : An → Bn−1

is a homotopy from f to g if

f − g = d ◦ h+ h ◦ d;

· · · An−1 An An+1 · · ·

· · · Bn−1 Bn Bn+1 · · ·

dn−1

fn−1gn−1

dn

fngn
hn

fn+1gn+1
hn+1

dn−1 dn

The homotopy category K(A) is the category whose objects are complexes and
whose morphisms are homotopy classes of morphisms of complexes. We let
K+(A),K−(A) and Kb(A) denote the full subcategory of K(A) of complexes
which are bounded below, bounded above and bounded, respectively.

(2.3.3) Definition. Let A be an abelian category and A• ∈ CoCh(A). The
i-th cohomology group of A• is the object

Hi(A•) =
Ker di

Im di−1

of A (this quotient of course denotes the cokernel of the map Im di−1 → Ker di).
For a morphism f : A• → B• we have an induced morphism

Hi(f) : Hi(A•)→ Hi(B•)

in cohomology. IfHi(f) is an isomorphism, we say that f is a quasi-isomorphism.

(2.3.4) Remark. A chain complex A• in A is defined in the same way as a
cochain complex except that the differentials go down in degree:

dn : An → An−1.



2.3. THE DERIVED CATEGORY 29

The definitions of homotopies, homology groups etc. is analogous. The cate-
gory of chain complexes is denoted Ch(A). Usually, all indices are written as
subscripts in chain complexes (homological convention) and as superscripts in
cochain complexes (cohomological convention). The i-th homology group of a
chain complex A• is thus denoted Hi(A•). In this chapter we will only discuss
cochain complexes.

The following results about the derived category are taken from Gelfand &
Manin [GM03] and Huybrechts [Huy06]. Proofs can be found in these refer-
ences.

(2.3.5) Proposition-definition. Let A be an abelian category. There exists
a category D(A) (unique up to equivalence) called the derived category of A
and a functor QA : CoCh(A)→ D(A) such that

(i) For any quasi-isomorphism f in CoCh(A), QA(f) is an isomorphism.

(ii) Any functor F : CoCh(A) → D transforming quasi-isomorphisms to iso-
morphisms can be uniquely factorised through D(A) in the following sense:
There exists a unique functor G : D(A)→ D such that F = G ◦QA.

(2.3.6) Proposition. The functor QA in proposition-definition (2.3.5) factors
through K(A). By abuse of notation, we denote the functor K(A)→ D(A) by
QA as well.

(2.3.7) Remark. The objects of the derived category D(A) are complexes
of objects in A, but if they are quasi-isomorphic in CoCh(A), then they are
isomorphic in D(A). Note that two seemingly very different complexes can be
quasi-isomorphic so it is not always helpful to regard the objects of D(A) as
complexes. Morphisms in the derived category are nontrivial to describe in
general, but sometimes, for nice A, we get a simpler description of D(A).

(2.3.8) Remark. We let D+(A), D−(A) and Db(A) stand for the obvious
bounded subcategories.

(2.3.9) Proposition.

• If A has enough injectives, then every bounded below complex M in A
admits a quasi-isomorphism M → I where I is a bounded below complex
of injectives. Moreover, the category D+(A) is equivalent to K+(IA),
where IA denotes the full subcategory of injective objects of A. The
equivalence K+(IA)→ D+(A) is given by the functor QA

• If A has enough projectives, then every bounded above complex M in A
admits a quasi-isomorphism P →M where P is a bounded above complex
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of projectives. Moreover, the category D−(A) is equivalent to K−(PA),
where PA denotes the full subcategory of projective objects of A. The
equivalence K−(PA)→ D−(A) is given by the functor QA.

2.3.2 As a triangulated category

The categories D∗(A) and K∗(A) (where ∗ denotes +,−, b or the empty string)
can be equipped with a so-called triangulated structure, defined below.

(2.3.10) Definition. Let C be an additive category and suppose for each n ∈ Z
given a functor

[n] : C → C, X 7→ X[n],

satisfying

[n+m] = [n] ◦ [m] and [0] = idC .

A triangle in C is a tuple (X,Y, Z, f, g, h) where f : X → Y , g : Y → Z and
h : Z → X[1]. A morphism of triangles

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

is a commutative diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

a b c a[1]

(2.3.11) Definition. A triangulated category is a triple (C, [ ], T ) where C is
an additive category, [ ] denotes a family of functors as described in definition
(2.3.10) and T is a set of triangles in C called distinguished triangles, satisfying
the following four axioms.

(TR1) Any triangle isomorphic to a distinguished triangle is a distinguished tri-
angle. Triangles of the form (X,X, 0, id, 0, 0) are distinguished. For any
morphism f : X → Y there exists a distinguished triangle (X,Y, Z, f, g, h).

(TR2) The triangle (X,Y, Z, f, g, h) is distinguished if and only if the triangle
(Y,Z,X[1], g, h,−f [1]) is distinguished.

(TR3) Given distinguished triangles (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′)
with morphisms a : X → X ′ and b : Y → Y ′ such that b ◦ f = f ′ ◦ a,
there exists a morphism c : Z → Z ′ such that (a, b, c) is a morphism of
triangles. This can be visualised by the following diagram
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X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

a b ∃c a[1]

(TR4) Given morphisms

X Y Z
f g

and distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g◦f, p2, d2), and
(Y,Z,Q3, g, p3, d3), there exist morphisms a : Q1 → Q2 and b : Q2 → Q3,
such that

(i) (Q1, Q2, Q3, a, b, p1[1] ◦ d3) is a distinguished triangle

(ii) (idX , g, a) : (X,Y,Q1, f, p1, d1) → (X,Z,Q2, g ◦ f, p2, d2) is a mor-
phism of triangles

(iii) (f, idZ , b) : (X,Z,Q2, g ◦ f, p2, d2) → (Y,Z,Q3, g, p3, d3) is a mor-
phism of triangles

(2.3.12) Definition. A functor F : C → D between triangulated categories is
called triangulated if

• There is a natural isomorphism of functors F (−[1])→ F (−)[1].

• Identifying F (X[1]) with F (X)[1] via the isomorphism above, F takes
distinguished triangles to distinguished triangles, i.e. if

(X,Y, Z, f, g, h)

is a distinguished triangle of C then

(F (X), F (Y ), F (Z), F (f), F (g), F (h))

is a distinguished triangle of D.

(2.3.13) Definition. Let f : A• → B• be a morphism of compelexes. We
define its mapping cone C(f) as the complex given by

C(f)i = Ai+1 ⊕Bi, diC(f) =

(
−di+1

A 0
f i+1 diB

)
.

(2.3.14) Definition. Let A be an abelian category. The shift functor

−[1] : CoCh(A)→ CoCh(A)

is defined by
A•[1] = A•+1, diA•[1] = −di+1

A• .
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(2.3.15) Remark. There are natural morphisms of complexes τ : B• → C(f)
induced by the injection Bi → Ai+1 ⊕Bi and π : C(f)→ A•[1] induced by the
projection Ai+1 ⊕Bi → Ai+1.

(2.3.16) Proposition. ([Huy06, Proposition 2.24]). Let A be an abelian cat-
egory and A• ∈ CoCh(A). The shift functor A•[1] = A•+1, diA•[1] = −di+1

A•
defines an equivalence of categories CoCh(A)→ CoCh(A), and induces a trian-
gulated structure on D(A) and K(A) (and the bounded versions as well). The
distinguished triangles are precisely those isomorphic to triangles of the form

A• B• C(f) A•[1]
f τ π

(2.3.17) Lemma. ([Sta21, Lemma 05QR]). In a triangulated category, let
f : X → Y be a morphism. The following are equivalent

(i) f : X → Y is an isomorphism

(ii) The triangle (X,Y, 0, f, 0, 0) is distinguished

(iii) For any distinguished triangle (X,Y, Z, f, g, h), we have Z = 0.

(2.3.18) Corollary. Let A be an abelian category. A morphism of complexes
f : X → Y of complexes in A is a quasi-isomorphism if and only if its mapping
cone is acyclic (i.e. quasi-isomorphic to zero).

Proof. Apply lemma (2.3.17) to the triangulated category D(A).

(2.3.19) Exact sequences and distinguished triangles I. Let A be an
abelian category and

0→ A→ B → C → 0

an exact sequence in A. Regarding A,B,C as complexes concentrated in degree
zero, we get the corresponding elements (still called A,B,C) in D(A). We claim
that the exact sequence above corresponds to a distinguished triangle in D(A).
We need to show that C is quasi-isomorphic to the mapping cone of A → B.
But this is clear, since the mapping cone of A → B is the two term complex
A→ B concentrated in degrees −1 and 0, and its cohomology is C as it sits in
the exact sequence with A and B above. We thus have maps

· · · → C[−1]→ A→ B → C → A[1]→ B[1]→ · · ·

(2.3.20) Exact sequences and distinguished triangles II. We want to
generalise (2.3.19) to exact sequences of complexes. More precisely, we want to
prove the following: Let

0→ A• → B• → C• → 0

https://stacks.math.columbia.edu/tag/05QR
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be an exact sequence in CoCh(A). Then there is a morphism C• → A•[1] in
D(A) such that

A• → B• → C• → A•[1]

is a distinguished triangle. To prove this, we show that there is a quasi-
isomorphism ϕ from the mapping cone of A• → B• to C•, and to obtain the
desired map C• → A•[1] we take the inverse of ϕ in the derived category and
compose with the natural map from the cone to A•[1]. So denote by f the map
A• → B•. Define the map ϕ : C(f)→ C• as

ϕn : An+1 ⊕Bn → Bn → Cn,

the composite of the projection and the map B• → C•. By definition, ϕ is an
epimorphism.

Now let i be the isomorphism from A• to Im f . We clearly have a monomorphism
ι : C(i)→ C(f) and it is easy to see that this forms an exact sequence

0 C(i) C(f) C• 0ι ϕ

Since i is an isomorphism, the cone C(i) is acyclic (by corollary (2.3.18)), and by
the long exact sequence in cohomology, we deduce that ϕ is a quasi-isomorphism,
as desired.

2.4 Tensor and hom of complexes

(2.4.1) Double complexes. Consider a commutative diagram of the form

...
...

...

· · · An−1,m−1 An,m−1 An+1,m−1 · · ·

· · · An−1,m An,m An+1,m · · ·

· · · An−1,m+1 An,m+1 An+1,m+1 · · ·

...
...

...

dv

dv

dv

dv

dv

dv

dhdh

dh

dh

dh

dh

whose entries are objects of an abelian category A, such that d2
h = 0 and

d2
v = 0. For short, we denote it as A••. We call it a double complex of A.

We will sometimes denote the vertical differential out of An,m by dn,mv and the
horizontal one dn,mh when extra clarity is needed.
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(2.4.2) Total complexes. Let A•• be a double complex in an abelian category
A.

(i) The direct sum total complex of A•• is the comlpex Tot⊕(A••) whose n-th
term is

Tot⊕(A••)n =
⊕
i+j=n

Ai,j

and whose differential

d :
⊕
i+j=n

Ai,j →
⊕

i′+j′=n+1

Ai
′,j′

is given by
d|Ai,j = di,jv + (−1)idi,jh ,

where we of course implicitly compose each term with the inclusions

Xi+1,j , Xi,j+1 ↪→
⊕

i′+j′=n+1

Ai
′,j′ .

(ii) The product total complex of A•• is the comlpex TotΠ(A••) whose n-th
term is

TotΠ(A••)n =
∏

i+j=n

Ai,j

and whose differential

d :
∏

i+j=n−1

Ai
′,j′ →

∏
i′+j′=n

Ai,j

is defined by giving its projection to the (i, j) factor:

di−1,j
v + (−1)idi,j−1

h

where again each term in the sum above is implicitly composed with the
relevant projection first.

Note that if for all n, An−j,j = 0 for |j| large enough, then the direct sum total
complex and product total complex coincide as the products and direct sums
involved are finite.

(2.4.3) Bifunctors. Suppose A,A′,A′′ are abelian categories and

F : A×A′ → A′′

a bifunctor which is additive in each variable. For complexes

A• ∈ CoCh(A) and B• ∈ CoCh(A′),

we define a double complex F (A•, B•) whose (i, j) entry is F (Ai, Bj) and whose
differentials are given by dv = F (dA, idB) and dh = F (idA, dB).
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(1) If A′′ admits countable direct sums, we can define the functor

F •⊕ : CoCh(A)× CoCh(A′)→ CoCh(A′′)

by mapping (A•, B•) to the direct sum total complex of the double complex
defined above, i.e.

F •⊕(A•, B•) = Tot⊕ (F (A•, B•))

(2) If A′′ admits countable products, we can define the functor

F •Π : CoCh(A)× CoCh(A′)→ CoCh(A′′)

by mapping (A•, B•) to the product total complex of the double complex
defined above, i.e.

F •Π(A•, B•) = TotΠ (F (A•, B•))

(2.4.4) Tensor product of complexes. Suppose A is an abelian category
with symmetric monoidal tensor product. Let A• and B• be complexes with
entries in A. Define the double complex C•• by Ci,j = Ai⊗Bj with the natural
differentials. We define the tensor product of the complexes A• and B• as the
direct sum total complex of C••.

A• ⊗B• := Tot⊕(C••).

In other words, if we set F = −⊗− : A×A → A, we have defined A• ⊗B• as
F •⊕(A•, B•).

(2.4.5) Hom complex. Let A•, B• be complexes with entries in the abelian
category A. Let C•• be the double complex with Ci,j = Hom(A−i, Bj) and the
natural differentials. We define the complex

Hom•(A•, B•) = TotΠ(C••),

in other words,

Homn(A•, B•) =
∏
j∈Z

Hom(Aj , Bj+n).

Again, we can put this in the more general framework: if we denote by F the
bifunctor Hom(−,−) : Aop × A → Ab, then we have defined Hom•(A•, B•) =
F •Π(A•, B•).

(2.4.6) Remark. Of course, the above is still valid if Hom takes values in an
abelian category different from Ab, such as A itself (internal hom) or e.g. a
category of modules.
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(2.4.7) Proposition. ([KS06, Proposition 11.6.4]). Let F : A × A′ → A′′ be
an additive bifunctor between abelian categories like above. Then if A′′ has
countable direct sums (resp. countable products) the functor F •⊕ (resp. F •Π)
induces a well defined bifunctor, triangulated in each variable, between the
homotopy categories, K(A)×K(A′)→ K(A′′).

(2.4.8) Tensor-hom adjunction. Suppose A has an internal Hom and sym-
metric monoidal tensor product, i.e. an adjunction

Hom(A⊗B,C) = Hom(A,Hom(B,C))

(we have seen that this is the case for A = CondAb). We can define an internal
hom complex Hom•(A•, B•) for complexes by replacing Hom by Hom in (2.4.5).
Using the tensor-hom adjunction above, we can show that the adjunction

HomK(A)(A
• ⊗B•, C•) = HomK(A)(A

•,Hom•(B•, C•))

still holds in the homotopy category.

2.5 Derived functors

(2.5.1) Definition. Let A be an abelian category and F : K∗(A) → E a
triangulated functor (as usual, K∗(A) stands for the unbounded or one of the
bounded versions of the homotopy categories).

• A right derived functor of F is a triangulated functor RF : D∗(A) → E
satisfying the universal property given by (i)-(ii) below

(i) There is a natural transformation

η : F → RF ◦QA,

(ii) If G : D∗(A)→ E is a triangulated functor, together with a natural
transformation

η′ : F → G ◦QA,

then there is a unique natural transformation θ : RF → G such that
η′ = θ ◦ η.

As usual with universal properties like this, the pair RF, η is unique up to
unique isomorphism.

• A left derived functor of F is a triangulated functor LF : D∗(A) → E
satisfying the universal property given by (i)-(ii) below

(i) There is a natural transformation

η : LF ◦QA → F,
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(ii) If G : D∗(A)→ E is a triangulated functor, together with a natural
transformation

η′ : G ◦QA → F,

then there is a unique natural transformation θ : G→ LF such that
η′ = η ◦ θ.

Again, the pair LF, η is unique up to unique isomorphism.

(2.5.2) Remark. Let F : A → B be an additive functor between abelian cat-
egories. By abuse of notation, we still denote the induced triangulated functor
K∗(A)→ K∗(B) (given by applying F termwise) by F . This is the most com-
mon setting for deriving a functor. In the case that RF : D∗(A) → K∗(B)
exists, we denote by RF again the composition QB ◦RF (after all, the functor
QB is triangulated as well). Same for LF .

(2.5.3) Definition. Let F : K∗(A)→ K∗(B) be a triangulated functor which
has a right derived functor RF . Then we define the higher derived functors of
F as

RiF (A•) = Hi(RF (A•))

(2.5.4) Definition. Let A,A′ be abelian categories and let

F : K∗(A)×K†(A′)→ E

be a triangulated bifunctor (i.e. triangulated in each variable). Here, ∗ and †
stand for (possibly different) boundedness conditions.

• A right derived bifunctor of F is a triangulated bifunctor

RF : D∗(A)×D†(A′)→ E

together with a natural transformation

η : F → RF ◦ (QA ×QA′),

satisfying the same universal property as in Defintion (2.5.1). The pair
RF, η is unique up to unique isomorphism.

• A left derived bifunctor of F is a triangulated bifunctor

LF : D∗(A)×D†(A′)→ E

together with a natural transformation

η : LF ◦ (QA ×QA′)→ F,

satisfying the same universal property as in Defintion (2.5.1). The pair
LF, η is unique up to unique isomorphism.
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(2.5.5) Definition. Let A be an abelian category. Recall that a complex
N ∈ K(A) is acyclic if Hi(N) = 0 for all i.

(1) A complex I ∈ K(A) is called K-injective if the complex Hom•(N, I) is
acyclic for every acyclic N .

(2) A K-injective resolution of M ∈ K(A) is a quasi-isomorphism M → I in
K(A) where I is K-injective.

(3) We say that K(A) has enough K-injectives if every object has a K-injective
resolution.

We also have the dual notion:

(1) A complex P ∈ K(A) is called K-projective if the complex Hom•(P,N) is
acyclic for every acyclic N .

(2) A K-projective resolution of M ∈ K(A) is a quasi-isomorphism P →M in
K(A) where P is K-projective.

(3) We say that K(A) has enough K-projectives if every object has a K-
projective resolution.

(2.5.6) Theorem. ([Yek15b, Theorems 4.2 and 4.7]). Let A be an abelian
category.

• Suppose K(A) has enough K-injectives. Then every triangulated functor
F : K(A) → E has a right derived functor (RF, η). Moreover, if I is K-
injective, then the morphism η : F (I)→ RF (QA(I)) is an isomorphism.

• Suppose K(A) has enough K-projectives. Then every triangulated functor
F : K(A) → E has a left derived functor (LF, η). Moreover, if P is K-
projective, then the morphism η : LF (QA(I))→ F (I) is an isomorphism.

(2.5.7) Theorem. ([Yek15a, Theorem 14.3.2]). Let A,A′ be abelian categories
and F : K∗(A)×K†(A′)→ E a triangulated bifunctor. Suppose there exists a
full triangulated subcategory I of K†(A′) with the following two properties:

(i) If ψ : I → I ′ and ϕ : M → M ′ are quasi-isomorphisms in I and K∗(A)
respectively, then

F (ϕ,ψ) : F (M, I)→ F (M ′, I ′)

is an isomorphism in E.

(ii) Every object N of K†(A′) admits a quasi-isomorphism N → I with I ∈ I.
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Then F has a right derived bifunctor (RF, η). If I ∈ I and M ∈ K∗(A), then
the morphism

η : F (M, I)→ RF (QA(M), QA′(I))

is an isomorphism. Thus we calculate the right derived functor by resolving in
the second variable with objects of I (note that there is nothing special about
the second variable, it might as well have been K∗(A) that had a subcategory
like I and then we would have resolved in the first variable).

(2.5.8) Theorem. (Dual to theorem (2.5.7)). Let A,A′ be abelian categories
and F : K∗(A)×K†(A′)→ E a triangulated bifunctor. Suppose there exists a
full triangulated subcategory P of K∗(A) with the following two properties:

(i) If ψ : P → P ′ and ϕ : N → N ′ are quasi-isomorphisms in P and K†(A′)
respectively, then

F (ψ,ϕ) : F (P,N)→ F (P ′, N ′)

is an isomorphism in E.

(ii) Every object M of K∗(A) admits a quasi-isomorphism

P →M with P ∈ P

Then F has a left derived bifunctor (LF, η). If P ∈ P and N ∈ K†(A′), then
the morphism

η : LF (QA(P ), QA′(N))→ F (P,N)

is an isomorphism. Thus we calculate the left derived functor by resolving in
the first variable with objects of P. The same remark about the first vs. second
variable as in (2.5.7) applies here.

(2.5.9) Proposition. If P is a bounded above complex of projectives in A
then P is K-projective. Similarily, a bounded below complex I of injectives is
K-injective.

Proof. We postpone the proof of this statement to chapter 4 where we define
more powerful tools to deal with results of this kind. See (4.2.5).

(2.5.10) Theorem. ([Spa88, Corollary 3.5]). Let A be an abelian category
with enough projectives satisfying (AB5) (filtered colimits are exact). Then
every complex in K(A) has a K-projective resolution. In other words, K(A)
has enough K-projectives. In particular, every complex of condensed abelian
groups has a K-projective resolution.

(2.5.11) Remark. Another criterion for the existence of enough K-projectives
in the sense of (2.5.10) is given in [KS06, Theorem 14.4.3]: A needs to have



40 CHAPTER 2. CONDENSED ABELIAN GROUPS

enough projectives and satisfy (AB3) and (AB4). Its dual is given as [KS06,
Theorem 14.4.4]: If A has enough injectives and satisfies (AB3*) and (AB4*),
then any complex in K(A) admits a K-injective resolution. In other words,
K(A) has enough K-injectives. In conclusion, we have theorem (2.5.12):

(2.5.12) Theorem. The category CondAb has enough K-injectives and K-
projectives.

(2.5.13) Remark. It shouold be noted again that the existence of injectives
in CondAb relies on the smallness condition, that we are actually working with
κ-condensed abelian groups. If one works with the more general category of
condensed abelian groups defined in [Sch19b], one loses the existence of enough
K-injectives.

(2.5.14) A derived bifunctor as a derived functor. One can easily verify
the following: Let

F : K∗(A)×K†(A′)→ K(A′′)
be a bifunctor for which the right derived bifunctor

RF : D∗(A)×D†(A′)→ D(A′′)

exists. Then for M ∈ K†(A′), the functor

RF (−,M) : D∗(A)→ D(A′′)

is the right derived functor of

F (−,M) : K∗(A)→ K(A′′).

The analogous statements for left derived functors, as well as keeping the other
variable fixed, of course hold as well.

2.6 The derived category of condensed abelian
groups

(2.6.1) K-flat complexes. Let A be a closed symmetric monoidal abelian
category with countable direct sums. This means that we have a commutative
tensor product which we can extend to complexes, and an internal hom, as
described above for CondAb, but other examples of such A are the category of
abelian groups, or more generally the category of all modules over a commutative
ring R. A complex P • is called K-flat if for any acyclic complex M•, the tensor
product P • ⊗M• is acyclic. In Ab and even in R-Mod for any commutative
ring R, a K-projective complex is K-flat (see [Yek19, Proposition 10.3.4]). This
might also hold in CondAb, but we only prove a bounded version.

(2.6.2) Lemma. Let P • be a bounded above complex of projective condensed
abelian groups. Then P • is K-flat.
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Proof. See chapter 4, when we have defined more powerful tools to deal with
results of this kind; (4.2.5).

(2.6.3) Lemma. Let A be an abelian category like in (2.6.1). Further, suppose
that K∗(A) has enough K-flats, i.e. that every M ∈ K∗(A) admits a quasi-
isomorphism Q→M where Q is K-flat. If ϕ : M →M ′ is a quasi-isomorphism
in K(A) and ψ : P → P ′ is a quasi-isomorphism of K-flat complexes, then
ϕ⊗ ψ : M ⊗ P →M ′ ⊗ P ′ is a quasi-isomorphism.

Proof. It suffices to prove the statement first in the case P = P ′, ψ = idP and
then in the case M = M ′, ϕ = idM , since a composition of quasi-isomorphisms
is a quasi-isomorphism.

Suppose first that P = P ′ and ψ = idP . Let N be the mapping cone of ϕ. Quasi-
isomorphisms in K(A) are precisely those morphisms whose mapping cone is
acyclic, see corollary (2.3.18). Since the functor −⊗P is triangulated, N ⊗P is
the mapping cone of M ⊗P →M ′⊗P . And since P is K-flat, N ⊗P is acyclic.

Now suppose that M = M ′ and ϕ = idM . Let Q → M be a K-flat resolution
(i.e. a quasi-isomorphism with Q a K-flat complex). Consider the commutative
diagram

Q⊗ P Q⊗ P ′

M ⊗ P M ⊗ P ′

The former case shows that the top horizontal arrow and both the vertical arrows
are quasi-isomorphisms, and we conclude that the bottom horizontal arrow is
as well, which is what we wanted.

(2.6.4) Derived tensor product. Consider the bifunctor

F := −⊗− : K(CondAb)×K(CondAb)→ K(CondAb)

given by the tensor product of complexes as defined in (2.4.4). This bifunctor
is triangulated in each variable by (2.4.7). We want to use theorem (2.5.8) to
define its left derived functor. In this work we will restrict ourselves to the
bounded above case, although the unbounded derived functor does exist. By
lemma (2.6.2), the category K−(CondAb) has enough K-flats (consisting of
bounded above complexes of projectives), and thus lemma (2.6.3) allows us to
use theorem (2.5.8) to conclude that there exists a derived tensor product

−⊗L − : D−(CondAb)×D−(CondAb)→ D(CondAb).

Concretely, for bounded above complexes M• and N• of condensed abelian
groups, we take a projective resolution P • →M•, and we have

M• ⊗L N• = P • ⊗N•.
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We get the same result by taking a projective resolution Q• → N•:

M• ⊗L N• = M• ⊗Q•.

(2.6.5) Derived hom. A proof nearly identical to that of lemma (2.6.3) shows
that if we have a quasi-isomorphism M ′ →M of complexes of condensed abelian
groups and I → I ′ of K-injective complexes of condensed abelian groups, then
the induced

Hom•(M, I)→ Hom•(M ′, I ′)

is a quasi-isomorphism. Thus we can take the K-injectives as the subcategory
I in theorem (2.5.7) to define the derived hom of condensed abelian groups.
Explicitly, we compute it as follows. For complexes M,N of condensed abelian
groups, take a K-injective resolution N → I. Then

RHom(M,N) = Hom•(M, I).

Since K-injectives in the opposite category are K-projectives in the original
category, we can also take a K-projective resolution P →M and calculate

RHom(M,N) = Hom•(P,N).

(2.6.6) Derived internal hom. Consider the bifunctor

Hom•(−,−) : K+(CondAbop)×K(CondAb)→ K(CondAb)

defined in the same way as Hom• but with internal Hom instead of the regular
Hom. We want to use the K-injectives and theorem (2.5.7) to define its right
derived functor. To be able to do this, we need to show that for any acyclic
(bounded below) complex M of condensed abelian groups and K-injective com-
plex I of condensed abelian groups, the complex

Hom•(M, I)

is acyclic, i.e. that for every extremally disconnected S, the complex

Hom(M ⊗ Z[S], I)

is acyclic. But this is clear, since Z[S] is projective and bounded, thus K-flat
on K−(CondAb)(= K+(CondAbop)) (by (2.6.2)), and therefore M ⊗ Z[S] is
acyclic, and since I is K-injective, we conclude that

Hom(M ⊗ Z[S], I)

is acyclic. Now we use the usual argument to conclude that we can calculate
RHom: for complexes M,N of condensed abelian groups (with M bounded
below) we take a K-injective resolution N → I and we have

RHom(M,N) = Hom•(M, I).

By definition, RHom is obtained by evaluating RHom at the point.
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(2.6.7) Tensor-hom adjunction. Let L,M,N be complexes of condensed
abelian groups (satisfying the relevant boundedness conditions: L,M bounded
above). Take a projective resolution P → L and a K-injective resolution N → I.
Then by (2.4.8) we have the adjunction

HomD(CondAb)(L⊗LM,N) = HomK(CondAb)(P ⊗M, I)

= HomK(CondAb)(P,Hom•(M, I))

= HomD(CondAb)(L,Hom•(M, I))

= HomD(CondAb)(L,RHom(M,N)).

(2.6.8) Derived tensor-hom adjunction. We have the adjunction

HomD(CondAb)(M ⊗L N,P ) = HomD(CondAb)(M,RHom(N,P )).

We want to show the derived version

RHom(M ⊗L N,P ) = RHom(M,RHom(N,P )).

Evaluating on the point, it suffices to show that

RHom(M ⊗L N,P ) = RHom(M,RHom(N,P )).

This follows formally from the fact that they represent the same functor: for
any X ∈ D(CondAb),

HomD(CondAb)

(
X,RHom(M ⊗L N,P )

)
= HomD(CondAb)

(
X ⊗LM ⊗L N,P

)
= HomD(CondAb)

(
X ⊗LM,RHom(N,P )

)
= HomD(CondAb) (X,RHom(M,RHom(N,P ))) .

This means that we can calculate the S-valued points of RHom as follows

RHom(M,N)(S) = RHom(M ⊗ Z[S], N).

2.7 Derived limits and colimits.

(2.7.1) Definition. Let D be a triangulated category and let (Kn, fn) be an
inverse system of objects in D indexed by N (i.e. for all n, fn+1 is a morphism
Kn+1 → Kn. An object K is a derived limit or homotopy limit of the system,
if the product

∏
n∈NKn exists and there is a distinguished triangle

K →
∏
n∈N

Kn →
∏
n∈N

Kn → K[1]

where the map between the products is given as follows. For each n ∈ N, we
define Kn+1 →

∏
n∈NKn by idKn+1

to the (n + 1)-st factor, −fn to the n-th
factor, and 0 otherwise.
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(2.7.2) Remark. Using the axioms of a triangulated category one can deduce
that a derived limit is unique up to isomorphism and that it exists whenever
the product

∏
n∈NKn exists. We write

K = R lim←−
n

Kn.

(2.7.3) Definition. Let D be a triangulated category and let (Kn, fn) be a
system of objects in D indexed by N (i.e. for all n, fn is a morphism Kn → Kn+1.
An object K is a derived colimit or homotopy colimit of the system, if the direct
sum

⊕
n∈N exists and there is a distinguished triangle⊕

n∈N
Kn →

⊕
n∈N

Kn → K →
⊕
n∈N

Kn[1]

where the map between the direct sums is given as follows. For each n ∈ N, we
define Kn →

⊕
n∈ZKn by idKn −fn.

(2.7.4) Remark. The same remark about existence and uniqueness applies to
derived colimits. We denote

K = hocolimnKn.

(2.7.5) Derived limits and colimits in D(A). Let A be an abelian category
with exact countable products and direct sums (for example, A = CondAb).
Then D(A) has countable products and direct sums. Moreover, if we have a
countable collection (K•n)n of objects of D(A) represented by complexes as the
notation suggests, then the product and direct sum are obtained by taking the
termwise product or direct sum (see [Sta21, Lemma 0A5L] and [Sta21, Lemma
07KC]).

We end this section with two lemmas which will be useful in chapter 4.

(2.7.6) Lemma. Let A be an abelian category with countable exact products
and let X be an object of D(A). Then X is a derived limit of the constant
inverse system (X, idX)n∈N.

Proof. Denote also by X a complex representing X. We have an exact sequence
of complexes

0→ X →
∏
n∈N

X →
∏
n∈N

X → 0

where the map between the products is given by (. . . , 0, id,− id, 0, . . . ) on each
factor and thus by (2.3.20) the distinguished triangle in D(A) required for the
derived limit.

https://stacks.math.columbia.edu/tag/0A5L
https://stacks.math.columbia.edu/tag/07KC
https://stacks.math.columbia.edu/tag/07KC
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(2.7.7) Lemma. Let A be an abelian category in which colimits over the
filtered category N = {0 → 1 → 2 → · · · } exist and are exact (such as A =
CondAb). Let (L•n) be a system in CoCh(A). Then the complex obtained by
taking the termwise colimit of these complexes is a homotopy colimit in D(A).

Proof. See [Sta21, Lemma 0949].

https://stacks.math.columbia.edu/tag/0949
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Chapter 3

Condensed cohomology of
compact Hausdorff spaces

In this chapter, we introduce a cohomology theory of condensed abelian groups,
which we apply to compact Hausdorff spaces and relate it to classical notions of
cohomology on such spaces. section 3.1 is devoted to introducing the simplicial
methods needed to give an explicit description of the cohomology then defined
in section 3.2.

3.1 Simplicial objects and hypercovers

3.1.1 Basic definitions and constructions

(3.1.1) Definition. Let ∆ denote the category of finite, nonempty ordinals

[n] = (0 < · · · < n)

and increasing maps between them. Let C be a category.

• A simplicial object of C is a functor ∆op → C. The category of simplicial
objects of C is denoted Simp(C).

• A cosimplicial object of C is a functor ∆→ C. The category of cosimplicial
objects of C is denoted CoSimp(C).

(3.1.2) Remark. • A cosimplicial object of C can equivalently be defined
as a simplicial object of Cop.

• If C is the category of sets, finite sets, abelian groups, etc. then the ob-
jects of Simp(C) are called simplicial sets, simplicial finite sets, simplicial

47
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abelian groups, etc., respectively. The same terminology is used for co-
simplicial objects.

(3.1.3) Definition. We denote by ∆[n] is the simplicial set represented by [n],
i.e. for all k,

∆[n]([k]) = Hom∆([k], [n]).

(3.1.4) Proposition. (See [Val20]). A simplicial object of a category C is given
by precisely the following data

• A collection (Xn) of objects of C indexed by the natural numbers

• For each 0 ≤ i ≤ n, a morphism di : Xn → Xn−1 and si : Xn → Xn+1

(faces and degeneracies respectively)

satisfying the simplicial identities

didj = dj−1di

sisj = sj+1si

disj =


sj−1di for i < j

id for i = j and i = j + 1

sjdi−1 for i > j + 1

(3.1.5) Remark. If S is a simplicial set, then we talk about the elements of
Sn as the n-simplices of S. An n-simplex is then called degenerate if it is in the
image of a degeneracy (and of course, nondegenerate otherwise). proposition
(3.1.4) implies that the nondegenerate simplices at each level determine the
simplicial set completely (all degenerate simplices are obtained by applying a
series of degeneracies to a nondegenerate simplex at a lower level).

(3.1.6) Remark. There is of course an analogue of proposition (3.1.4) for
cosimplicial objects and the analogue of the remark above holds as well. A
cosimplicial object X has cofaces and codegeneracies

δi : Xn−1 → Xn, σi : Xn+1 → Xn,

for i = 0, . . . , n.

(3.1.7) Definition. Let U, V be simplicial sets. We build from these two
natural simplicial sets:

• The product U × V has components (U × V )n = Un × Vn, degeneracies
and faces being the obvious maps.
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• The internal hom Hom(−,−) is defined as the right adjoint to the product
above:

HomSimp(Set)(U × V,W ) = HomSimp(Set)(U,Hom(V,W ))

functorially in U, V,W . Explicitly, one has by the Yoneda Lemma:

Hom(U, V )n = HomSimp(Set)(∆[n],Hom(U, V ))

= HomSimp(Set)(∆[n]× U, V ).

(3.1.8) Definition. Let C be a category, let U be a simplicial object of C and
let V be a simplicial set. The product U × V (if it exists) is defined as the
simplicial object of C having terms

(U × V )n =
∐
u∈Un

Vn.

For a map ϕ : [m]→ [n], we define

(U × V )(ϕ) :
∐
u∈Un

Vn →
∐

u′∈Um

Vm

to be the map taking the component Vn corresponding to u to the component
Vm corresponding to u′ = U(ϕ)(u) via the map V (ϕ).

(3.1.9) Remark. It is clear that if we let U in (3.1.8) be a simplicial set, then
we retrieve the notion of product of simplicial sets in (3.1.7).

(3.1.10) Definition. • Let U be a simplicial set and V a cosimplicial set.
We define the cosimplicial set Hom(U, V ) as follows:

– (Hom(U, V ))n = HomSet(Un, Vn)

– For ϕ : [m] → [n] the map Hom(U, V )m → Hom(U, V )n is given by
f 7→ V (ϕ) ◦ f ◦ U(ϕ).

• Now let U be a simplicial set, C a category such that all products appearing
below exist, and V a cosimplicial object of C. Inspired by the previous
point, we define the cosimplicial object Hom(U, V ) of C as follows.

– For each n, we set

Hom(U, V )n =
∏
u∈Un

Vn,

i.e. the object representing the functor

HomC(−,Hom(U, V )n) = HomSet(Un,HomC(−, Vn))
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– For ϕ : [m] → [n], we define a natural transformation between the
functors represented by Hom(U, V )m and Hom(U, V )n. These are in
bijection (by Yoneda) with morphisms Hom(U, V )m → Hom(U, V )n
in C. For X an object of C, we thus define a morphism

HomSet(Um,HomC(X,Vm))→ HomSet(Un,HomC(X,Vn))

by f 7→ V (ϕ) ◦ f ◦ U(ϕ).

(3.1.11) Remark. Let’s spell out the actual morphism

Hom(U, V )m → Hom(U, V )n

given by the natural transformation above. The bijection

Nat(HomC(−,Hom(U, V )m),HomC(−,Hom(U, V )n))

→ HomC(Hom(U, V )m,Hom(U, V )n)

is
η 7→ η(idHomC(Hom(U,V )m,Hom(U,V )m)).

Now

HomC(Hom(U, V )m,Hom(U, V )m) = HomSet

(
Um,HomC

( ∏
u∈Um

Vm, Vm

))

and the identity corresponds to u 7→ pu where pu denotes the u-th projection.
The natural transformation we gave in the definition thus gives the morphism∏

u∈Um

Vm →
∏
u′∈Un

Vn

whose projection onto the factor Vn corresponding to u′ ∈ Un is V (ϕ)◦pU(ϕ)(u′).

(3.1.12) Lemma. Let X be a set which we also regard as a constant simplicial
set (Xn = X for all n, maps are all identities). Let k ∈ N. Let V be any
simplicial set. There is a natural bijection

HomSimp(Set)(X ×∆[k], V )→ HomSet(X,Vk)

given by γ 7→ (γk)|X×{id[k]}

Proof. A morphism γ : X × ∆[k] → V is given by a collection of morphisms
(γn : X×Hom∆([n], [k])→ Vn)n∈N such that for any ϕ : [m]→ [n], the diagram

X ×Hom∆([n], [k]) Vn

X ×Hom∆([m], [k]) Vm

(idX ,◦ϕ)

γn

γm

V (ϕ)
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commutes. For any α ∈ Hom∆([n], [k]), we have

V (ϕ) ◦ γn(x, α) = γm(x, α ◦ ϕ).

Taking α = id[ k], we obtain

γm(x, ϕ) = V (ϕ) ◦ γk(x, id[k]).

Thus γ is determined by (γk)|X×{id[k]} as desired. Conversely, starting with a
map f : X → Vk, we construct γ by setting γm(x, ϕ) = V (ϕ)(f(x))

3.1.2 Skeleton functors and its adjoints

(3.1.13) Definition. Denote by ∆≤n the full subcategory of ∆ consisting of
the objects [0], . . . , [n]. An n-truncated simplicial object is a functor ∆op

≤n → C.
The category of n-truncated simplicial objects of C is denoted Simpn(C).

• Given a simplicial object U of C we define skn(U) to be the restriction of
the functor U to the subcategory ∆≤n This defines the so called skeleton
functor

skn : Simp(C)→ Simpn(C)

• A coskeleton functor is a functor

coskn : Simpn(C)→ Simp(C)

which is right adjoint to the skeleton functor, i.e. there is an isomorphism,
functorial in U and V

HomSimp(C)(U, coskn V ) ' HomSimpn(C)(skn U, V )

• A left adjoint to the skeleton functor is denoted

in! : Simpn(C)→ Simp(C).

The adjunction formula is

HomSimpn(C)(U, skn V ) ' HomSimp(C)(in!U, V )

functorially in U and V .

(3.1.14) Remark. Consider the category (∆/[m])n with objects [k] → [m]
with k ≤ n. Given an n-truncated simplicial object U of C we define a functor

U{m} : (∆/[m])n)op → C

by
U{m}([k]→ [m]) = Uk
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U{m}


[k′] [k]

[m]

ψ
 = U(ψ) : Uk → Uk′

Given a morphism ϕ : [m]→ [m′] we have a functor ϕ : (∆/[m])n → (∆/[m′])n
which maps α : [k]→ [m] to ϕ ◦ α : [k]→ [m′]. We have U{m′} ◦ ϕ = U{m}.

(3.1.15) Proposition. ([Sta21, Lemma 0183]) If C has all finite limits, then
coskn exists for all n and is given by the following formula: For U an n-truncated
simplicial object,

(coskn U)m = lim←−
(∆/[m])opn

U{m}

and for a map ϕ : [m]→ [m′], there is a natural morphism coskn(ϕ) by [Sta21,
Lemma 002L].

(3.1.16) Remark. Dualizing remark (3.1.14), consider the category ([m]/∆)n
of objects under [m] [m]→ [k] with k ≤ n. We define a functor

U{m} : ([m]/∆)op
n → C

in an analogous way to the previous remark.

(3.1.17) Proposition. ([Sta21, Lemma 018L]). If C has all finite colimits, then
in! exists for all n and is given by the following formula: For U an n-truncated
simplicial object,

(in!U)m = lim−→
([m]/∆)opn

U{m}

and for a map ϕ : [m] → [m′], there is a natural morphism in!(ϕ) by [Sta21,
Lemma 002K].

(3.1.18) Remark. In particular, both the adjoints to the skeleton exist in
simplicial sets.

(3.1.19) Theorem. Let V be a simplicial set. Then

(coskn skn V )n+1 = HomSimp(Set)(in! skn ∆[n+ 1], V )

Proof. We will show that the sets in the equation represent the same endofunctor
on the category of sets. Let X be a set. The functor represented by the left
hand side takes X to

HomSet(X, (coskn skn V )n+1) = HomSimp(Set)(X ×∆[n+ 1], coskn skn V )

= HomSimp(Set)(skn(X ×∆[n+ 1]), skn V )

= HomSimp(Set)(in! skn(X ×∆[n+ 1]), V )

https://stacks.math.columbia.edu/tag/0183
https://stacks.math.columbia.edu/tag/002L
https://stacks.math.columbia.edu/tag/018L
https://stacks.math.columbia.edu/tag/002K
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where the last two inequalities are the adjunctions and the first one is lemma
(3.1.12). The functor represented by the right hand side takes X to

HomSet(X,HomSimp(Set)(in! skn ∆[n+ 1], V )

= HomSet(X,Hom(in! skn ∆[n+ 1], V )0)

= HomSimp(Set)(X ×∆[0],Hom(in! skn ∆[n+ 1], V ))

= HomSimp(Set)(X × in! skn ∆[n+ 1], V )

where the first equality follows from the definition of the internal hom, the
second is lemma (3.1.12) and the last is the product-hom adjunction plus the
obvious fact that X ×∆[0] = X.

To finish the proof, we thus need to show that

in! skn(X ×∆[n+ 1]) = X × in! skn ∆[n+ 1].

Clearly skn(X ×∆[n+ 1]) = X × skn ∆[n]. To show that we can also move the
in! over the equality sign, we note that for any simplicial set W , the internal
hom simplicial set Hom(X,W ) is given by (the set X is here regarded as a con-
stant simplicial set) Hom(X,W )n = HomSet(X,Wn) (this follows from lemma
(3.1.12)). Hence (skn Hom(X,W ))m = HomSet(X, (sknW )m). Thus if W is a
(possibly truncated) simplicial set, we can define a (possibly truncated) simpli-
cial set, still denoted Hom(X,W ), whose n-th component is HomSet(X,Wn),
which still satisfies the product-hom adjunction. We obtain

HomSimp(Set)(X × in! skn ∆[n+ 1],W )

= HomSimp(Set)(in! skn ∆[n+ 1],Hom(X,W ))

= HomSimpn(Set)(skn ∆[n+ 1], skn Hom(X,W ))

= HomSimpn(Set)(X × skn ∆[n+ 1], sknW )

= HomSimp(Set)(in!(X × skn ∆[n+ 1]),W )

We conclude that

X × in! skn ∆[n+ 1] = in!(X × skn ∆[n+ 1])

and since the right hand side has already been observed to be equal to

in! skn(X ×∆[n+ 1],

we are done.

3.1.3 Hypercovers

(3.1.20) Definition. Let C be a category and X an object of C.
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• The category of semi-representables of C is denoted SR(C). Its objects are
families {Xi}i∈I of objects of C. A morphism {Xi}i∈I → {Yj}j∈J is given
by a map of sets α : I → J and for each i ∈ I a morphism ϕi : Xi → Yα(i)

in C.

• We define the category of semi-representables over X as

SR(C, X) := SR(C/X).

In other words, its objects are families {Xi → X}i∈I of morphisms with
fixed target X, and a morphism

{Xi → X}i∈I → {Yj → X}j∈J

is given by a map α : I → J and for each i a map ϕi : Xi → Yα(i)

over X (meaning that the natural diagram commutes). There is a natural
forgetful functor SR(C, X)→ SR(C).

(3.1.21) Finite limits in the category of semirepresentables. If C is a
category with fibre products then SR(C) has fibre products. Further, if X is
an object of C, then SR(C, X) has all finite limits. In particular, all coskeleton
functors exist in Simp(SR(C, X)).

For a proof of this fact, see [Sta21, Lemma 01G2].

But how do the finite limits, and in particular coskeletons, in SR(C, X) actually
look? Consider first fibre products in SR(C). Let

(α, (fi)i∈I) : {Ui}i∈I → {Vj}j∈J

and
(β, (gk)k∈K) : {Wk}k∈K → {Vj}j∈J

be morphisms in SR(C). Then one can show that the fibre product of these two
morphisms is given by

{Ui ×fi,Vj ,gk Wk}(i,j)∈I×α,J,βK

(where j denotes α(i) = β(k)).

Since SR(C, X) = SR(C/X) we can apply the above argument to C/X to con-
clude that SR(C, X) has fibre products. Namely, the fibre product of

(α, (fi)i∈I) : {Ui → X}i∈I → {Vj → X}j∈J

and
(β, (gk)k∈K) : {Wk → X}k∈K → {Vj}j∈J

is given by
{Ui ×fi,Vj ,gk Wk → X}(i,j)∈I×α,J,βK .

https://stacks.math.columbia.edu/tag/01G2
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Further, C/X has the final object idX : X → X and thus {idX : X → X} is the
final object of SR(C, X). Having fibre products and a final object, is equivalent
to having all finite limits (see [Sta21, Lemma 002O]) and in fact all finite limits
are of the form A1×B1

A2×B2
· · ·×Bn−1

An (see the previously cited lemma and
[Sta21, Lemma 002N]). The above description of fibre products in SR(C) and
SR(C, X) still holds for this sort of iterated fibre product of n objects and 2n
morphisms (writing it out would be painful, and not very helpful). The point is
that we can reduce a commutation result below (see (3.1.36)) to the distribution
of fibre product over disjoint union.

(3.1.22) Definition. Let C be a category, with fibre products, equipped with
a Grothendieck pretopology P, and let X and object of C. A hypercover of X
is a simplicial object K of SR(C, X) such that

K0 := {Xi → X}i∈I ∈ CovP(X),

and for all n ≥ 0, each component of the canonical map

Kn+1 → (coskn sknK)n+1

gives a covering family in the following sense: Suppose

Kn+1 = {Xi → X}i∈I

and
(coskn sknK)n+1 = {Yj → X}j∈J

and that the map is given by α : I → J . Then for each j ∈ J , we have
{Xi → Yj}α(i)=j ∈ CovP(Yj).

(3.1.23) Definition. Let A be an abelian category and U a (co)simplicial
object of A. Then the (co)chain complex with the same components as U and
the differential given by alternating sum of (co)face maps is denoted s(U) and
called the Moore complex of U .

(3.1.24) Proposition-definition. Let F be a presheaf of abelian groups on a
site C. Then F extends to a functor

SR(C)op → Ab, {Xi}i∈I 7→
∏
i∈I
F(Xi)

Let X be an object of C and K a hypercover of X. The simplicial object K of
SR(C) (remember that we have the forgetful functor SR(C, X) → SR(C)) gives
rise, via this functor, to a cosimplicial object of Ab, which we denote F(K).
The cohomology Hi(s(F(K))) of the Moore complex is called the cohomology
of X with respect to the hypercover K.

Proof. To justify this definition, we only need to see that for a morphism
{Xi}i∈I → {Yj}j∈J in SR(C) given by α : I → J and ϕi : Xi → Yα(i) for

https://stacks.math.columbia.edu/tag/002O
https://stacks.math.columbia.edu/tag/002N
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all i ∈ I, we have a well defined functorial morphism∏
j∈J
F(Yj)→

∏
i∈I
F(Xi).

Defining such a map is equivalent to separately defining a map from the left
hand side into F(Xi) for each i. So define that map as (yj)j∈J 7→ F(ϕi)(yα(i)).
Functoriality is clear.

3.1.4 Homotopies

(3.1.25) Definition: simplicial homotopies. Let U, V be simplicial objects
of a category C and a, b : U → V two morphisms. Suppose the product U×∆[1]
exists in C.

• A simplicial homotopy from a to b is a morphism h : U ×∆[1]→ V such
that the diagram

U

U ×∆[1] V

U

h

e0

b

a

e1

commutes, where e0, e1 are induced from the two maps ∆[0]→ ∆[1] (recall
that U ×∆[0] = U).

• We say that the morphisms a and b are homotopic or that a is homotopic
to b if there is a finite sequence of morphisms a = a0, . . . , an = b such that
for all i = 1, . . . , n, there is a homotopy from ai−1 to ai or ai to ai−1.

• We say that f : U → V is a homotopy equivalence if there exists a

g : V → U

such that f ◦ g is homotopic to idV and g ◦ f is homotopic to idU . In that
case we say that U and V are homotopy equivalent.

(3.1.26) An explicit description of homotopies. Suppose we have a ho-
motopy h from a to b where a, b : U → V are maps of simplicial objects as
above. Now, write

(∆[1])n = Hom∆([n], [1]) = {αn0 , . . . , αnn+1}

where αni denotes the map [n]→ [1] given by

j 7→

{
0 if j < i

1 if j ≥ i
.
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The homotopy h : U ×∆[1] → V , being a morphism of simplicial objects, has
components

hn : (U ×∆[1])n =
∐
i

Un · αni → Vn

(where we write Un · αni just to distinguish the n+ 2 copies of Un). Let

hn,i : Un → Vn

denote the restriction of the map hn to the component of the coproduct corre-
sponding to αni , i = 0, . . . , n + 1. Then one can easily check that we have the
following

(1) hn,0 = bn and hn,n+1 = an

(2) dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j

(3) dnj ◦ hn,i = hn−1 ◦ djn for i ≤ j

(4) snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j

(5) snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a collection of such maps hn,i satisfying (1)-(5) above, they
define a morphism h which is a homotopy from a to b. This can be proven using
the fact that giving a morphism of simplicial sets is equivalent to giving a map
on each level, commuting with all faces and degeneracies.

(3.1.27) Simplicial homotopies and chain homotopies. Let A be an
abelian category and let U and V be two simplicial objects of A, with

a, b : U → V

simplicial morphisms. Recall the functor s mapping a simplicial object to its
Moore complex (see (3.1.23)). If h is a simplicial homotopy from a to b, then
we want to deduce a chain homotopy s(h) from s(a) to s(b) (note that s(a) and
s(b) are simply a and b). We define s(h)n : Un → Vn+1 by the formula

s(h)n =

n∑
i=0

(−1)i+1hn+1,i+1 ◦ sni .

For a calculation showing that this is indeed a chain homotopy from a to b, see
[Sta21, Section 019Q].

Using this, we can show that homotopy equivalent simplicial objects map to
chain homotopy equivalent complexes. We state this fact as a theorem:

(3.1.28) Theorem. Let A be an abelian category. Let U, V be simplicial
objects of A. If

a : U → V

https://stacks.math.columbia.edu/tag/019Q
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is a simplicial homotopy equivalence, then

s(a) : s(U)→ s(V )

is a chain homotopy equivalence.

(3.1.29) Definition - cosimplicial homotopies. Let U, V be cosimplicial
objects of a category C and a, b : U → V two morphisms. Assume that the
cosimplicial hom, Hom(∆[1], V ), exists in C (a sufficient condition is that C
have finite products).

• A (cosimplicial) homotopy from a to b is a morphism

h : U → Hom(∆[1], V )

such that the diagram

V

U Hom(∆[1], V )

V

a

b

h

e0

e1

commutes, where e0, e1 are induced from the two maps ∆[0]→ ∆[1] (it is
clear that Hom(∆[0], V ) = V .

• The concepts homotopic and homotopy equivalence are defined in exactly
the same way as in the simplicial case.

(3.1.30) The duality of cosimplicial and simplicial homotopy. Let C
be a category with finite products and let U, V be two cosimplicial objects of
C. Let a, b : U → V be a pair of morphisms of cosimplicial objects. The
cosimplicial objects U and V correspond to simplicial objects U ′ and V ′ of Cop

and the morphisms a, b correspond to simplicial morphisms a′, b′ : V ′ → U ′.
The existence of a cosimplicial homotopy h from a to b is equivalent to the
existence of a simplicial homotopy from a′ to b′. Indeed, this follows from the
observation that finite products of C correspond to finite coproducts of Cop and
that (Hom(∆[1], V ))′ = V ′×∆[1], so the commutative diagram in the definition
of a simplicial homotopy is the “primed” version of the one in the definition of
a cosimplicial homotopy.

This observation allows us to deduce the theorem that we need later on:

(3.1.31) Theorem. Let A be an abelian category and U, V cosimplicial objects
of A. If a : U → V is a cosimplicial homotopy equivalence, then

s(a) : s(U)→ s(V )

is a homotopy equivalence of cochain complexes.
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(3.1.32) The boundary of ∆[n]. Recall that ∆[n] has no nondegenerate m-
simplices for m > n and exactly one for m = n. The nondegenerate n-simplex
is given by the identity,

id[n] ∈ (∆[n])n = Hom∆([n], [n]).

For a simplicial set V , we have that im! skm V is the sub-simplicial set of V
consisting of all i-simplices of V for i ≤ m and their degeneracies (see [Sta21,
Lemma 018P] and [Sta21, Remark 018Q]). By analogy with topological n-
simplices, we thus denote

∂∆[n+ 1] = in! skn ∆[n+ 1]

and call it the boundary.

(3.1.33) Definition - trivial Kan fibrations. Let X → Y be a morphism of
simplicial sets. It is called a trivial Kan fibration if X0 → Y0 is surjective and
for all n ≥ 1 and for all commutative squares

∂∆[n] X

∆[n] Y

a dotted arrow exists making the whole diagram commutative.

(3.1.34) Lemma. Let X → Y be a trivial Kan fibration of simplicial sets.
Let Z → W be a termwise injective morphism of simplicial sets fitting into a
commutative square as below. Then a dotted arrow exists making the whole
diagram commutative.

Z X

W Y

Proof. See [Sta21, Lemma 08NM].

(3.1.35) Theorem. A trivial Kan fibration f : X → Y is a homotopy equiva-
lence.

Proof. Applying (3.1.34) to the diagram

X X

Y Y

idX

f

idY

f

https://stacks.math.columbia.edu/tag/018P
https://stacks.math.columbia.edu/tag/018Q
https://stacks.math.columbia.edu/tag/08NM
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we see that f has a right inverse g. We then only need to show that g ◦ f is
homotopic to idX .

Now, ∂∆[1] has its only nondegenerate simplices in degree 0, and there are two
of them (0 7→ 0 and 0 7→ 1). The degeneracies Z0 → Zn compose in a unique
way for any simplicial set Z so we have that (∂∆[1])n is a two-element set for
all n. Thus (∂∆[1]×X)n = Xn tXn for all n. We have a commutative square

∂∆[1]×X X

∆[1]×X Y

where the top arrow is given by idX = f ◦g and g ◦f (using the characterisation
of ∂∆[1] above), the bottom arrow is given by f and the unique ∆[1] → ∆[0],
the left arrow is given by the inclusion and idX and the right one is f . The
square is indeed commutative because f ◦ g ◦ f = f . By lemma (3.1.34) we
can fill it in with the dotted arrow, which gives a homotopy from g ◦ f to id.
More precisely, the top left triangle in our diagram above corresponds to the
two triangles in the homotopy diagram

X

∆[1]×X X

X

g◦f

idX

3.1.5 Hypercovers in the condensed setting

(3.1.36) Hypercovers in the site of compact Hausdorff spaces. In the
case of condensed abelian groups, i.e. sheaves on the site CHaus, we want
to show that for the purposes of cohomology, it is enough to consider only
hypercovers that are singleton families on each level. So let S be a compact
Hausdorff space and let K be a general hypercover of S. Write

Kj = {Si,j → S}i∈Ij

and for each n,

(coskn sknK)n+1 = {S̃j,n+1 → S}j∈Jn+1
.

We have that I0 is finite and ∐
i∈I0

Si,0 → S
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is surjective. Further, each component of the canonical map

Kn+1 → (coskn sknK)n+1

gives a finite jointly surjective family. In other words, let αn : In+1 → Jn+1

be the map giving the canonical map above. Then α−1
n (j) is a finite set for

each j ∈ Jn+1. We want to show that In+1 is finite by induction. We know
that (coskn sknK)n+1 is a finite limit in the category SR(CHaus, S) of objects,
whose indexing sets are finite by the inductive hypothesis. This means that the
indexing set Jn+1 of (coskn sknK)n+1 is a subset of a finite product of finite
sets and thus finite. This implies that In+1 is finite.

We conclude that our hypercover K is of the form Kn = {Si,n → S}i∈In with

In finite for all n. Further, (coskn sknK)n+1 = {S̃j,n+1 → S}j∈Jn+1 with Jn+1

finite for all n, and we have a natural surjection∐
i∈In+1

Si,n+1 →
∐

j∈Jn+1

S̃j,n+1

We define a simplicial object S• of CHaus by setting

Sn =
∐
i∈In

Si,n

(since the families are finite, these disjoint unions remain compact Hausdorff).
To show that S• is in fact a hypercover of S, it suffices to show that

(coskn skn S•)n+1 =
∐

j∈Jn+1

S̃j,n+1.

By the description of finite limits in (3.1.21), this follows from the general result
that (

n∐
i=1

Ai

)
×C

 m∐
j=1

Bj

 =
∐
i,j

Ai ×C Bj

in the category of sets (and thus also compact Hausdorff spaces).

Now if F from definition (3.1.24) is a condensed abelian group, then it takes
finite coproducts to the corresponding finite products, and thus we see that the
cohomology with respect to the two hypercovers is the same.

(3.1.37) Hypercovers of a point. Now consider a hypercover S• of a point
∗ in the site CHaus, i.e. a simplicial object S• of CHaus such that

Sn+1 → (coskn skn S•)n+1

is a surjection. We can regard ∗ as a constant simplicial set and thus the
hypercover as a morphism of simplicial sets S• → ∗. We want to show that
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this morphism is a trivial Kan fibration. By Yoneda for the left hand side and
(3.1.19) for the right hand side, the above surjection translates into

HomSimp(Set)(∆[n+ 1], S•)→ HomSimp(Set)(∂∆[n+ 1], S•)

being surjective, i.e. that any commutative square

∂∆[n+ 1] S•

∆[n+ 1] ∗

admits a dotted arrow making the whole diagram commute (the lower triangle
being automatically commutative), and thus we conclude that S• → ∗ is a trivial
Kan fibration.

(3.1.38) Hypercovers of a finite set. Consider a hypercover S• of a finite
set S in the site CHaus. Then the fibres give a hypercover of each point sepa-
rately. It is easy to see from the definition that a finite coproduct of homotopy
equivalences is sitll a homotopy equivalence, and since the hypercover of each
point is a trivial Kan Fibration by (3.1.37) and thus a homotopy equivalence by
(3.1.35), the morphism of simplicial sets S• → S is a homotopy equivalence.

3.2 Cohomology

3.2.1 Different notions of cohomology

(3.2.1) Internal cohomology of the topos of condensed sets. A natural
notion of cohomology of an object S of a site C is to take the higher right derived
functors of the global sections functor Γ(S,−) from the category of sheaves of
abelian groups on C to the category of abelian groups. These are the cohomology
groups of the right derived functor of Γ(S,−), i.e.

RΓ(S,M).

Now suppose S is a compact Hausdorff space and regard condensed abelian
groups as sheaves of abelian groups on the site CHaus. We have seen that

Γ(S,−) = HomCondAb(Z[S],−)

so the cohomology with coefficients in the condensed abelian group M is given
by the cohomology of the object

RHom(Z[S],M)

(here we have used the relationship between derived functors and derived bi-
functors described in (2.5.14)). This is the sort of cohomology we are interested
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in relating to classical notions of cohomology in the present chapter. In the next
chapter, however, we will use a slight natural generalisation. The above notion
of cohomology is really a cohomology of the condensed set S associated to the
topological space S. We might as well define the cohomology of a condensed set
T with coefficients in the condensed abelian group M as the cohomology of

RHom(Z[T ],M).

These cohomology groups will be denoted

Hi
cond(T,M).

For a condensed abelian group A we denote the i-th cohomology group of
RHom(A,M) by Exti(A,M) so we have

Hi
cond(T,M) = Exti(Z[T ],M)

(3.2.2) Remark. We can also define internal Ext as the cohomology objects

Exti(A,M) = Hi(RHom(A,M)).

These of course belong to the category of condensed abelian groups. This notion
won’t be used until in chapter 4.

(3.2.3) A closer look at the condensed cohomology of S. For a compact
Hausdorff space S, we can describe explicitly how to calculate the cohomology
groups Hi

cond(S,M). We need to find a complex representing RHom(Z[S],M),
and this is done by either taking a projective resolution of Z[S] or an injec-
tive resolution of M . We use the former approach and construct a projective
resolution P • → Z[S] by using a simplicial hypercover S• → S by extremally
disconnected sets and setting P i = Z[Si].

To do this, let S0 → S be a surjection where S0 is an extremally disconnected set.
Suppose we have defined S0, . . . , Sn in such a way that they form an n-truncated
simplicial object of ED. Then let Sn+1 be the an extremally disconnected set
surjecting onto (coskn(S0, . . . , Sn))n+1. Then we want to show that S0, . . . , Sn+1

form an (n+ 1)-truncated simplicial object of ED. Indeed, the face maps from
Sn+1 are obtained by composing the face maps from coskn(S0, . . . , Sn) with
the surjection; the degeneracy maps into Sn+1 are obtained by composing de-
generacy maps into coskn(S0, . . . , Sn) with its section. It is easy to verify that
these maps satisfy the required properties from proposition (3.1.4). Also, by
definition the natural map Sn+1 → coskn(skn(S•))n+1 is surjective. Being a
simplicial object of ED, S• is also a simplicial object of CHaus; thus S• → S is
a hypercover with respect to the site CHaus with finite jointly surjective families
as covers.

By [Sta21, Lemma 01GF], the Moore complex Z[S•] (with alternating sums of
face maps) is exact. Further, we have seen that the free condensed abelian

https://stacks.math.columbia.edu/tag/01GF
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groups on extremally disconnected sets are projective, so we do indeed have a
projective resolution of Z[S].

The above shows that the cohomology groups Hi
cond(S,M) are then computed

by the complex

0→ Γ(S0,M)→ Γ(S1,M)→ Γ(S2,M)→ · · ·

(3.2.4) Classical sheaf and Čech cohomology. A more classical notion of
cohomology on the compact Hausdorff space S is the following: Let F be an
abelian sheaf on the topological space S. The i-th sheaf cohomology group of S
with respect to F is the i-th right derived functor of Γ(S,−) at F . Explicitly
it is computed by taking an injective resolution F → I• and computing the
cohomology of the complex

0→ Γ(S, I0)→ Γ(S, I1)→ · · ·

We denote these cohomology groups Hi
sheaf(S,F). These cohomology groups

can, when S is compact Hausdorff, be calculated as the Čech cohomology groups
as well (see the discussion in the beginning of Lecture III of [Sch19b]).

3.2.2 Relating classical and condensed cohomology

Scholze attributes theorem (3.2.5) to Dyckhoff [Dyc76]. We give here the proof
found in [Sch19b].

(3.2.5) Theorem. Let S be a compact Hausdorff space and M a discrete
abelian group. There are natural isomorphisms

Hi
sheaf(S,M) ∼= Hi

cond(S,M)

where on the left, M is regarded as the sheafification of the constant presheaf
U 7→M .

Proof. We begin by treating the case where S is a profinite set. In this case, we
want to show that for i = 0, both are equal to the set of continuous maps from
S into M and for i > 0 both are 0.

The result for Hi
sheaf(S,M). First, suppose i = 0. We have that

H0
sheaf(S,M) = Γsheaf(S,M).

The sheafification of the constant presheaf M takes every open U to the set
of locally constant maps U → M , but since M is discrete, this is the same as
continuous maps U →M ; in particular, H0

sheaf(S,M) = C(S,M).

For the case i > 0 write S = lim←−j Sj as a cofiltered limit of finite sets. We

have Hi
sheaf(Sj ,M) = 0 for all j, thus by [ES52, Chapter X, Theorem 3.1] and

[God58, Théorème 5.10.1], we have Hi
sheaf(S,M) = 0.
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For Hi
cond(S,M), we take a simplicial hypercover S• of S by extremally dis-

connected sets as described above. Then

H0
cond(S,M) = Γ(S,M) = M(S) = C(S,M)

as desired.

For the case i > 0, we observe that by [Sta21, Lemma 03F9] it suffices to show
that for any surjection S′ → S of profinite sets, the Čech complex

0→ Γ(S,M)→ Γ(S′,M)→ Γ(S′ ×S S′,M)→ · · ·

is exact. This follows from the case for S′, S finite by passing to cofiltered
limits (as we have seen, the global sections functor commutes with all limits
and colimits).

Now for the general case; S a compact Hausdorff space. We denote by α∗ the
functor taking a sheaf F on the site of compact Hausdorff spaces to the sheaf
α∗(F) on the topological space S defined such that for all U ⊂ S open,

α∗(F)(U) := lim←−
U⊃V closed in S

F(V )

(this α∗ arises from a natural morphism of topoi α : Sh(CHaus /S) → Sh(S)).
One easily sees that Γcond(S,−) = Γsheaf(S,−) ◦ α∗ and that α∗, being a limit,
commutes with finite limits, and therefore is left exact. Thus by [Sta21, Lemma
015M], RΓcond(S,−) = RΓsheaf(S,−)◦Rα∗. We want to show that Rα∗M = M
in the derived category of abelian sheaves on S, because then,

Hi
cond(S,M) = Hi(RΓcond(S,M)) = Hi(RΓsheaf(S,Rα∗M))

= Hi(RΓsheaf(S,M)) = Hi
sheaf(S,M)

as desired.

It suffices to show that for all s ∈ S, (Rα∗M)s = M .

Since the open neighborhoods U of s are cofinal with the closed neighborhoods
V of s (i.e. any open contains a closed neighborhood (take a compact one, it is
closed)), we have

(Rα∗M)s = lim−→
U3s

RΓsheaf(U,Rα∗M) = lim−→
U3s

RΓcond(U,M) = lim−→
V 3s

RΓcond(V,M).

Since the Hi
cond vanish for profinite sets whenever i > 0, then by the usual

arguments for derived (bi)functors we can take a simplicial hypercover S• → S
of profinite sets and compute RΓcond(S,M) by the complex

0→ Γ(S0,M)→ Γ(S1,M)→ · · ·

https://stacks.math.columbia.edu/tag/03F9
https://stacks.math.columbia.edu/tag/015M
https://stacks.math.columbia.edu/tag/015M
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Note that however the face maps Si → S are composed, we get the same re-
sult (follows by induction using the property didj = dj−1di and the base case
cosk0(S0)1 = S0 ×S S0). Thus the fibre product Si ×S V is well defined and
clearly S• ×S V is a simplicial hypercover of V . Therefore, the complex

0→ Γ(S0 ×S V,M)→ Γ(S1 ×S V,M)→ · · ·

computes RΓcond(V,M). Taking the filtered colimit of the complex above yields

0→ Γ(S0 ×S {s},M)→ Γ(S1 ×S {s},M)→ · · ·

which computes RΓ({s},M) = M . Thus,

(Rα∗M)s = lim−→
V 3s

RΓcond(V,M) = M

as desired.

(3.2.6) Theorem. For any compact Hausdorff space S, let C(S,R) denote the
space of continuous real-valued functions as usual. Then

Hi
cond(S,R) =

{
C(S,R) if i = 0

0 if i > 0
.

Proof. This theorem is a corollary of theorem (3.2.7) below.

(3.2.7) Theorem. Let S be a compact Hausdorff space. For any simplicial
hypercover S• → S by profinite sets Si, the complex of Banach spaces

(∗) 0→ C(S,R)→ C(S0,R)→ C(S1,R)→ · · ·

satisfies the following “quantitative” version of exactness: if f ∈ C(Si,R) satis-
fies df = 0, then for any ε > 0 there exists a g ∈ C(Si−1,R) such that dg = f
and ‖g‖ ≤ (i+ 2 + ε) ‖f‖ (‖·‖ denotes the supremum norm).

Proof sketch. The theorem is proved by a series of lemmas:

(3.2.8) Lemma. If S and all Si are finite, then (∗) is exact and if f ∈ C(Si,R)
satisfies df = 0, then there is a g ∈ C(Si−1,R) with ‖g‖ ≤ (i + 2) ‖f‖ and
dg = f .

Proof. In this case, the morphism S• → S of simplicial sets is a homotopy
equivalence by (3.1.38). Denote it by α and its homotopy inverse by β. Also,
since the Si and S are all finite, all maps from them into R are continuous.
Regarding R as a constant cosimplicial object, we see that the cosimplicial
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abelian group given by the C(Si,R)’s is just the cosimplicial abelian group
Hom(Si,R). Since

Hom(∆[1]× S•,R)n = HomSet(∆[1]n × Sn,R)

= HomSet(∆[1]n,HomSet(Sn,R))

= Hom(∆[1],Hom(S•,R)n

we have
Hom(∆[1]× S•,R) = Hom(∆[1],Hom(S•,R))

and thus the simplicial homotopy diagram is transformed to a cosimplicial homo-
topy diagram and we have a cosimplicial homotopy equivalence from C(S•,R)
to the constant simplicial abelian group C(S,R). This gives a chain homotopy
equivalence between the Moore complexes

0 C(S0,R) C(S1,R) C(S2,R) · · ·

0 C(S,R) C(S,R) C(S,R) · · ·id 0 id

In the following, for a map ϕ : A→ B, ϕ∗ will denote the map

C(B,R)→ C(A,R), f 7→ f ◦ ϕ.

Now take f ∈ C(Si,R) with df = 0. We have a homotopy given by

hn : C(Sn,R)→ C(Sn−1,R)

satisfying
d ◦ hn + hn+1 ◦ d = idC(Sn,R)−α∗n ◦ β∗n

for all n. Therefore,
d(hi(f)) = f − α∗i (β∗i (f)).

If i is even, then since β∗ is a morphism of comlpexes, we have id ◦β∗i = β∗i+1 ◦d
and thus β∗i (f) = β∗i+1(d(f)) = 0. We conclude in the case i even that

f = d(hi(f)).

In the case i odd, we use that α∗ is a morphism of complexes, i.e.

α∗i ◦ id = d ◦ α∗i−1.

We condlude in the case where i is odd that

f = d
(
hi(f) + α∗i−1(β∗i (f))

)
.

Since α∗i−1(β∗i (f)) = f ◦ βi ◦αi, we have
∥∥α∗i−1(β∗i (f))

∥∥ ≤ ‖f‖. By (3.1.27) and
the correspondence between simplicial and cosimplicial homotopies, hi(f) is an
alternating sum of i + 1 pullbacks of f . Therefore ‖hi(f)‖ ≤ (i + 1) ‖f‖. In
either case i odd or even, we conclude that f = dg with ‖g‖ ≤ (i+ 2) ‖f‖.
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(3.2.9) Remark. Let N be a normed vector space. Then the following is well
known: There exists a Banach space B, unique up to isometry, such that N can
be isometrically and densely embedded in B. We call B the completion of N
and regard N as a subet of B.

(3.2.10) Lemma. Let

0→ N0 → N1 → N2 → N3 → · · ·

be a complex of normed vector spaces with continuous differential, satisfying
the following quantitative version of exactness: For each i, there is a constant
Mi such that for every f ∈ N i such that df = 0, for any ε there is a g ∈ N i−1

with dg = f and ‖g‖ ≤ (Mi + ε) ‖f‖. Then the corresponding complex of the
completions satifies the same quantitative exactness.

Proof. Recall that a sequence (fn)n∈N is said to be rapidly Cauchy if the series∑
n∈N
‖fn+1 − fn‖

is convergent. Let Ci be the space of rapidly Cauchy sequences of N i and Zi the
subspace of Ci consisting of null sequences (sequences tending to zero). Then
it can be shown that the completion of N i is the quotient Ci/Zi with the norm
of [(xn)n∈N] given by limn→∞ ‖xn‖ (which is well defined since the sequence of
norms is a Cauchy sequence in R and thus convergent).

To show that the complex of completions is exact, we prove that C• and Z• are
exact. Then using that 0→ Z• → C• → C•/N• → 0 is a short exact sequence
of complexes, we pass to the long exact sequence in cohomology and deduce
that C•/N• is exact.

For exactness of Z•: Let (fn) be a null sequence in Zi with differential zero.
Let ε > 0. Then for every n there exists gn with dgn = fn and

‖gn‖ ≤ (Mi + ε) ‖fn‖ → 0 when n→∞.

Thus (gn) is a null sequence and we conclude that Z• is exact.

For exactness of C•: Let (fn) be a rapidly Cauchy sequence in Ci with differ-
ential zero. Let ε > 0. For convenience, let f−1 = 0. Since d(fn − fn−1) = 0,
there exists gn with dgn = fn − fn−1 and ‖gn‖ ≤ (Mi + ε) ‖fn − fn−1‖ for all
n ≥ 0. Let

hm =

m∑
i=0

gi

Then dhm = fm, and (hn) is rapidly Cauchy, since∑
n∈N
‖hn+1 − hn‖ =

∑
n∈N
‖gn+1‖ ≤ (Mi + ε)

∑
n∈N
‖fn+1 − fn‖ < +∞
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We conclude that the complex of completions is exact. It remains to show that
it satisfies the quantitative version of exactness. So suppose df = 0. Let (fn)
be a rapidly Cauchy sequence in Ker d converging to f . For each n take gn with
dgn = fn and ‖gn‖ ≤ (Mi + ε) ‖fn‖. Then passing to the limits (since d is
continuous), we obtain the desired result for g and f .

(3.2.11) Lemma. Any profinite set X = lim←−iXi, where the Xi are finite sets,

is isomorphic to a lim←−iX
′
i with each X ′i finite, in which all the transition maps

are surjective.

Proof. By (A.1.7) we can assume that X is the limit of a directed inverse system
(Xi, fij) indexed by a partially ordered set I, where fij : Xj → Xi whenever
i ≤ j. We will define another directed inverse system (X ′i, f

′
ij) with all the f ′ij

surjective, which has the same limit X.

Define

X ′i =
⋂
j≥i

fij(Xj)

It is clear that for all i, X ′i ⊂ Xi. For j ≥ i, define f ′ij : X ′j → X ′i as the
restriction of fij . It is not a priori clear that f ′ij lands in X ′i. To show this, let

x ∈ X ′j =
⋂
k≥j

fjk(Xk).

We want to show that f ′ij(x) = fij(x) ∈ X ′i, i.e. that for all k ≥ i, there is a
y ∈ Xk such that fik(y) = fij(x). Since we are working in a directed inverse
system, pick an s ∈ I with s ≥ j and s ≥ k. Since x ∈ X ′j , there is a z ∈ Xs

with fjs(z) = x. Set y = fks(z); then we have

fik(y) = fik(fks(z)) = fis(z) = fij(fjs(z)) = fij(x)

as desired.

It is now clear that we have a directed inverse system (X ′i, f
′
ij). Next up is

showing that for j ≥ i, f ′ij : X ′j → X ′i is surjective. Let x ∈ X ′i. Then for all

k ≥ i, there is an xk ∈ Xk with fik(xk) = x, in particular the fibre f−1
ik {x}

is nonempty. It suffices to show that there exists an element y ∈ f−1
ij {x} with

y ∈ X ′j . For a contradiction, suppose there is no such y. Then for every

y ∈ f−1
ij {x} there is an index jy ≥ j such that f−1

jjy
{y} = ∅. Now since

f−1
ij {x} ⊂ Xi is finite, we can find a k ∈ I such that k ≥ jy for all y. Then we

have

x = fik(xk) = fij(fjk(xk))

so

fjk(xk) ∈ f−1
ij {x}
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which means that fjk(xk) is one of the y’s above, so write

y = fjk(xk) = fjjy (fjyk(xk))

and conclude that
fjyk(xk) ∈ f−1

jjy
{y} = ∅

and we have our contradiction.

Finally, we show that the two inverse systems (Xi, fij) and (X ′i, f
′
ij) have the

same limit. The limit of the former is{
(xi)i∈I ∈

∏
i∈I

Xi : fij(xj) = xi for all j ≥ i

}

and from the definition we see that each xi actually lies in X ′i, and since f ′ij is
just the restriction of fij we conclude that this limit actually equals{

(xi)i∈I ∈
∏
i∈I

X ′i : f ′ij(xj) = xi for all j ≥ i

}

which is precisely the limit of the inverse system (X ′i, f
′
ij).

We state the next two (important) lemmas without proof.

(3.2.12) Lemma. If X = lim←−iXi is a profinite set (with each Xi finite), then

C(X,R) is the completion of lim−→i
C(Xi,R).

(3.2.13) Lemma. If Si and S in the theorem are all profinite, the statement
of the theorem is true.

We pass to the most general case, S ∈ CHaus. Let S• → S be a hypercover by
profinite sets Si.

Observation: For any s ∈ S, the sets S ×S {s} = {s} and Si ×S {s} are
profinite so the corresponding complex

0→ C(S ×S {s},R)→ C(S0 ×S {s},R)→ C(S1 ×S {s},R)→ · · ·

satisfies the condition in the last lemma.

Now let f ∈ C(Si,R), df = 0. Let s ∈ S. We can regard Si ×S {s} as
the fibre of s along Si → S, and in particular talk about the restriction of
f to Si ×S {s}, which we denote fs ∈ C(Si ×S {s},R). By the observation
above and lemma (3.2.13), there is a gs ∈ C(Si−1 ×S {s},R) with dgs = fs and
‖gs‖ ≤ (i+2+ε) ‖fs‖. By Tietze’s extension theorem, there is a g̃s ∈ C(Si−1,R)
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extending gs with ‖g̃s‖ ≤ ‖gs‖. Since Si is compact Hausdorff, the closed subset
Si×S {s} of Si on which dg̃s−f is zero can be separated from the closed subset
consisting of the elements where dg̃s− f takes values ≥ ε ‖f‖. In particular, we
can find an open neighbourhood Us of s in S such that

‖(dg̃s − f)|Si×SUs‖ ≤ ε ‖f‖

There is a finite subcover of (Us)s∈S ; in other words there are opens U1, . . . , Un
covering S and gj ∈ C(Si−1,R) for j = 1, . . . , n with ‖gj‖ ≤ (i+ 2 + ε) ‖f‖ such
that ∥∥(dgj − f)|Si×SUj

∥∥ ≤ ε ‖f‖
for all j = 1, . . . , n.

Take a partition of unity 1 =
∑n
j=1 ρj with 0 ≤ ρj ≤ 1 and supp ρj ⊂ Uj . Let

g(0) =

n∑
j=1

ρjgj .

Then ∥∥∥g(0)
∥∥∥ ≤ (i+ 2 + ε) ‖f‖ .

Set f (1) = f − dg(0). We have∥∥∥f (1)
∥∥∥ =

∥∥∥dg(0) − f
∥∥∥ ≤ ε ‖f‖ .

Start this process over with f (1) instead of f , and repeat, and we conclude

f = d(g(0) + g(1) + · · · ) =: dg

with ∥∥∥g(m)
∥∥∥ ≤ (i+ 2 + ε)

∥∥∥f (m)
∥∥∥ ≤ (i+ 2 + ε)εm ‖f‖

so

‖g‖ ≤ i+ 2 + ε

1− ε
‖f‖

as desired (redefining ε).
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Chapter 4

Locally compact abelian
groups and their associated
condensed abelian groups

We begin this chapter in section 4.1 by discussing further the relationship be-
tween topological spaces and condensed sets, as well as introducting topological
groups and in particular locally compact abelian groups. section 4.2 gives a
very short introduction to spectral sequences, stating the main theorem we
need, when calculating derived homs between locally compact abelian groups in
section 4.3

4.1 Some topology

4.1.1 Condensed vs. topological

It is time to discuss the relationship between topological spaces and condensed
sets in more detail than in chapter 1.

(4.1.1) Compactly generated weak Hausdorff spaces. A subcategory of
topological spaces often used by homotopy theorists is CGWH, which we define
below. This category has some nicer properties, such as being cartesian closed,
a property not satisfied by the whole category of topological spaces.

A category is said to be cartesian closed if it has products of pairs and an
internal hom satisfying

Hom(X × Y,Z) = Hom(X,Hom(Y,Z)).

Topological spaces have internal hom: the set of continuous maps X → Y with

73
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the compact-open topology. Products of pairs of course exist as well (product
topology), but the adjunction above is only satisfied in certain special cases
(such as Y being locally compact).

A topological space X is said to be compactly generated if continuous maps
X → Y are precisely those making the composite S → X → Y continuous for
every compact Hausdorff space S mapping continuously to X.

A topological space X is weak Hausdorff if for any compact Hausdorff S with
a continuous f : S → X, the image f(S) is (compact) Hausdorff.

We will in the following mainly be interested of the former property.

(4.1.2) Remark. We say that a topological space X is κ-compactly generated
if it satisfies the condition in the definition of compactly generated for every
κ-small compact Hausdorff space S, instead of every compact Hausdorff space
S. We want to prove the following: a κ-small topological space X is compactly
generated if and only if it is κ-compactly generated.

Proof. We need to show that if f : X → Y has the property that for every
κ-small compact Hausdorff space S′ with a continuous g′ : S′ → X, f ◦ g′
is continuous, then for every compact Hausdorff space S with a continuous
g : S → X, f ◦ g is continuous. But we can just take S′ to be the quotient
S/ ∼ where s1 ∼ s2 if and only if g(s1) = g(s2). Then |S| ≤ |X| < κ and since
the equivalence relation ∼ is closed and S is compact Hausdorff, S′ is compact
Hausdorff. Then indeed, we have an induced continuous g′ : S′ → X and thus
f ◦g′ is continuous. Let q : S → S′ denote the quotient map; then f ◦g = f ◦g′◦q
is continuous.

(4.1.3) Lemma. The inclusion of the category of compactly generated spaces
in topological spaces admits a right adjoint X 7→ Xcg, where Xcg has underlying
set X and the topology is the final topology for the collection of all continuous
maps S → X where S is a compact Hausdorff space (i.e. the finest topology on
the set X making them all continuous).

Proof. Note that Xcg is compactly generated by definition. For the adjunction,
we need to show that if Y is compactly generated, then f : Y → X is continuous
if and only if f : Y → Xcg is continuous. Since the topology on Xcg is finer than
the one on X, the ⇐ direction is obvious. Suppose f : Y → X is continuous.
Since Y is compactly generated, to show that f : Y → Xcg is continuous,
it suffices to show that for any compact Hausdorff space S with a continuous
g : S → Y , the composite f ◦ g : S → Xcg is continuous. Since f ◦ g : S → X is
continuous, this is true by definition, and we are done.

(4.1.4) Remark. Remark (4.1.2) shows that lemma (4.1.3) holds even if the
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category of topological spaces is replaced with the category of κ-small topological
spaces.

(4.1.5) Theorem. (i) The functor X 7→ X from (κ-small) topological spaces
to condensed sets is faithful, and fully faithful when restricted to the sub-
category of compactly generated topological spaces.

(ii) The functor X 7→ X admits a left adjoint T → T (∗) where the underlying
set T (∗) is equipped with the final topology for the collection of all maps
S → T (∗) where S is compact Hausdorff, that come from a map of con-
densed sets S → T (here we regard condensed sets as sheaves on the site
CHaus).

Proof. We start by proving that (ii) implies (i). Note that X(∗) = Xcg (indeed,
morphisms of condensed sets S → X are, by Yoneda, in bijection with X(S),
which are precisely the continuous maps S → X). Thus by the adjunction in
(ii), we have

HomCondSet(X,Y ) = HomTop(X(∗), Y )

= HomTop(Xcg, Y )

↪→ HomTop(X,Y )

where the arrow at the bottom is an isomorphism if X is compactly generated,
i.e. X = Xcg.

Now we prove (ii). Let T be a condensed set and X a topological space (recall
that we are working in κ-condensed sets and κ-small topological spaces). We
want to show the functorial isomorphism

HomCondSet(T,X) = HomTop(T (∗), X).

It suffices to show that giving a morphism of condensed sets T → X is equivalent
to giving a map of sets T (∗) → X such that for each compact Hausdorff space
S with a map of condensed sets S → T , the composite S → T (∗) → X is
continuous. By Yoneda, the maps S → T are in bijection with the set T (S) and
thus taking such a map to the induced composite S → T (∗) → X gives a map
of condensed sets T → X. Suppose then that we have a map of condensed sets
f : T → X. Let S be a compact Hausdorff space with a map of condensed sets
η : S → T . Then f ◦ η : S → X is a map of condensed sets and corresponds by
Yoneda to an element of X(S), i.e. a continuous map S → X, namely f ◦η(idS).
We need to show that this map is the same as the map S → T (∗) → X. But
this follows from considering each of the naturality diagrams

S(S) X(S)

S(∗) X(∗)
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corresponding to each of the constant maps ∗ → S, for the natural transforma-
tion f ◦ η, which by definition factors through T , and we are done.

4.1.2 Quasi-compact and quasi-separated condensed sets

Here, we give a result identifying compact Hausdorff spaces with a certain class
of condensed sets. Although not necessary for what follows, the result (4.1.8)
fits the spirit of this section.

(4.1.6) Definition. A sheaf F on a site C is said to be quasi-compact (abbre-
viated qc) if for any collection of maps of sheaves {Fi → F}i∈I such that the
induced map ∐

i∈I
Fi → F

is an epimorphism, there exists a finite subset J ⊂ I such that∐
i∈J
Fi → F

is an epimorphism.

(4.1.7) Definition. A sheaf F on a site C is said to be quasi-separated (abbre-
viated qs) if it satisfies the following condition. For any G,H → F with G and
H quasi-compact sheaves, the sheaf G×F H is again quasi-compact. We use the
abbreviation qcqs for sheaves that are quasi-compact and quasi-separated.

(4.1.8) Theorem. ([Sch19b, Theorem 2.16]).

(i) The functor X 7→ X gives an equivalence from the category of compact
Hausdorff spaces to the category of qcqs condensed sets.

(ii) A compactly generated space X is weak Hausdorff if and only if the con-
densed set X is qs. For any qs condensed set T , the topological space T (∗)
is compactly generated weak Hausdorff.

4.1.3 Locally compact abelian groups

(4.1.9) Definition. An abelian group A equipped with a topology for which
the addition and inverse

A×A→ A, (a, b) 7→ a+ b

A→ A, a 7→ −a

are continuous, is called a topological abelian group.
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(4.1.10) Definition. A topological abelian group A is called a locally compact
abelian group or LCA if its underlying topological space is Hausdorff and locally
compact. We also denote by LCA the category of locally compact abelian groups
and continuous maps.

(4.1.11) Structure theorem for locally compact abelian groups. Let
A be a locally compact abelian group. There exists an integer n and a locally
compact abelian group A′ admitting a compact open subgroup such that

A ' Rn ×A′.

(4.1.12) Remark. The group A′ in the structure theorem (4.1.11) is an ex-
tension of a discrete abelian group by a compact abelian group. Indeed, let K
be the compact open subgroup. Then we need to show that A′/K is discrete.
The cosets x+K ⊂ A′ are open for all x ∈ A′. This means that the singletons
{x+K} ⊂ A′/K are open in the quotient topology. Since all elements of A′/K
have this form, this is a discrete abelian group.

(4.1.13) The circle T = {e2πiθ : θ ∈ R} is a compact subgroup of the locally
compact abelian group C. There is a natural isomorphism between T and the
quotient R/Z.

(4.1.14) Pontrjagin duality. Let T denote the circle group R/Z. The functor
D, which takes a locally compact abelian group to the abelian group Hom(A,T)
equipped with the compact-open topology, takes values in LCA and induces
a contravariant autoequivalence of LCA. The map A → D(D(A)) is an iso-
morphism. Moreover, D restricts to a duality from compact abelian groups to
discrete abelian groups.

(4.1.15) Remark. For proofs of the above results on locally compact abelian
groups, see for example [DE09, Chapter 4].

(4.1.16) Remark. The category of locally compact abelian groups is not
abelian. However, it comes close, and is what is called quasi-abelian. The
kernel of a map f : A→ B in LCA is the usual algebraic kernel equipped with
the subspace topology. The cokernel of f is B/Im f equipped with the quo-
tient topology (it is a quotient by a closed equivalence relation and thus locally
compact Hausdorff, and so belongs to LCA). The problem is that we can have
maps with trivial kernel and cokernel that are not isomorphisms, for example
the inclusion Q ↪→ R. The property of being quasi-abelian is still enough to
define a bounded derived category Db(LCA), but there are neither enough in-
jectives nor enough projectives. As we have seen, condensed abelian groups
form a very nice abelian category, and we can embed Db(LCA) in D(CondAb).
In Db(LCA), there is a notion of derived hom, and in the rest of this chapter
we give a proof sketch of the result that these derived homs can be calculated
by the RHom that we have defined in D(CondAb).
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(4.1.17) Proposition. A locally compact Hausdorff space is compactly gener-
ated. In particular, locally compact abelian groups are compactly generated.

Proof. Let X be a locally compact Hausdorff space, and let f : X → Y be a
map where Y is a topological space, such that for any compact Hausdorff space
S with a continuous map S → X, the composition S → X → Y is continuous.
We need to show that f is continuous. It suffices to show that it is continuous
on a neighbourhood of every x ∈ X. Take S ↪→ X a compact neighbourhood of
x and we are done.

4.2 Spectral sequences

(4.2.1) Definition. Let r0 be an integer ≥ 1. A spectral sequence in an abelian
category A is a collection

(Ep,qr , dp,qr , En)p,q,r,n∈Z,r≥r0

where all the Ep,qr and En are objects of A and the

dp,qr : Ep,qr → Ep+r,q−r+1

are morphisms in A.

For a fixed r, the collection of objects (Ep,qr )p,q∈Z is called the r-th page of the
spectral sequence. The morphisms dp,qr are called differentials.

These data are required to satisfy the following conditions:

(i) For all p, q, r we have
dp+r,q−r+1
r ◦ dp,qr = 0.

(ii) There are given isomorphisms

Ep,qr+1 ' H0(Ep+•r,q−•r+•).

(iii) For any pair (p, q) ∈ Z × Z there is an r∞ such that for all r ≥ r∞, we
have dp,q = dp−r,q+r−1 = 0 (i.e. both the differentials into and out of Ep,qr
are zero). In particular, Ep,qr ' Ep,qr∞ =: Ep,q∞ .

(iv) There is a decreasing filtration

· · · ↪→ F p+1En ↪→ F pEn ↪→ · · · ↪→ En

such that ⋂
p∈Z

F pEn = 0 and
⋃
p∈Z

F pEn = En, 1

1The meaning of the intersection (resp. union) of such a filtration in an arbitrary category
should be clear: the limit (resp. colimit) over the totally ordered set Z.
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and there are given isomorphisms

Ep,q∞ ' F pEp+q/F p+1Ep+q.

(4.2.2) Remark. Note that the r0-th page of a spectral sequence determine
the rest of the pages. A spectral sequence is usually given by writing

Ep,qr0 ⇒ Ep+q.

(4.2.3) Cohomology of the total complex. Suppose we have a double
complex A•• in an abelian category A with the property that for all n,

An−k,k = 0

for |k| sufficiently large. Then the two notions of total complex coincide and we
denote by A• the total complex which we recall is given by

An =
⊕
i+j=n

Ai,j =
⊕
j∈Z

An−j,j .

We want to define a spectral sequence to compute the cohomology of the total
complex. Let’s clarify some notation. Recall that the vertical differentials are
denoted dv and the horizontal ones are denoted dh. We denote the i-th coho-
mology of the total complex by Hi(A•). By taking the p-th cohomology of each
row, (Hp(A•,j) being the p-th cohomology group of the j-th row), since dv is
a morphism of complexes A•,j → A•,j+1 for each j, we get another complex
Hp
h(A••) with differential Hp(dv). Then we can take the q-th cohomology of

this vertical complex, and denote it

Ep,q2 = Hq
v (Hp

h(A••)).

As the notation suggests, these objects will form the second page of our spectral
sequence. It also has an E1-page, as stated in (4.2.4). We refer to [Huy06] for
the precise construction, in particular the filtration.

(4.2.4) Theorem. ([Huy06, Proposition 2.64 and Remark 2.65]). Let A•• be a
double complex like in (4.2.3) (and all the other notation defined there). Then
there is a spectral sequence

Ep,q2 = Hq
v (Hp

h(A••))⇒ Hp+q(A•).

It also has an E1-page:

Ep,q1 = Hq(A•,p)⇒ Hp+q(A•).
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(4.2.5) An application. We now have the tools to prove certain results
used in chapter 2, namely that a bounded above complex of projective con-
densed abelian groups is K-flat and K-projective in K−(CondAb) and that a
bounded below complex of injective condensed abelian groups is K-injective
in K+(CondAb) (cf. (2.6.2) and (2.5.9)). The proofs are all similar and we
only prove the first one. So let P ∈ K−(CondAb) consist of projective con-
densed abelian groups. Projective condensed abelian groups are flat so if M is
an acyclic bounded above complex of condensed abelian groups, then for each
j, the complex M ⊗ P j is acyclic. Thus the E1 page of associated spectral
sequence vanishes, and thus also the limiting terms, i.e. the cohomology of
the total complex. We conclude that the tensor product complex M ⊗ P is
acyclic.

4.3 The condensed viewpoint

(4.3.1) Proposition. Let A and B be Hausdorff topological groups with A
compactly generated. Then there is a natural isomorphism of condensed abelian
groups

Hom(A,B) ' Hom(A,B)

where Hom(A,B) is equipped with the compact-open topology.

Proof. We need to construct a map of condensed abelian groups

η : Hom(A,B)→ Hom(A,B)

We have

Hom(A,B)(S) = HomCondAb(A⊗ Z[S], B).

A map

f : A⊗ Z[S]→ B

gives a map

f : A⊗ Z[S]→ B

(evaluating at ∗). Then let η(f) be the map

S → Hom(A,B), s 7→ (a 7→ f(a⊗ s)).

We need to show that this is continuous for the compact-open topology. A
characterisation of the compact-open topology is the following: a map

g : S → Hom(A,B)

is continuous for the compact-open topology if and only if the map

A× S → B, (a, s) 7→ g(s)(a)
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is continuous. Now, the map

(a, s) 7→ f(a⊗ s)

corresponds to the map
f : A⊗ Z[S]→ B

of condensed abelian groups. Since there is a natural surjection

Z[A× S] = Z[A]⊗ Z[S]A⊗ Z[S],

this determines and is determined by a map of condensed abelian groups

Z[A× S]→ B,

which determines and is determined by a map of condensed sets

A× S → B,

i.e. a continuous map A×S → B, as desired. In the above we have constructed
an injective map

Hom(A,B)→ Hom(A,B).

We need to show that it is surjective. Given a profinite set S with a map

S → Hom(A,B)

that is continuous for the compact-open topology, we can reverse the steps above
to get a map

Z[A]⊗ Z[S]→ B

of condensed abelian groups. We need to show that this factors through A⊗Z[S].
Now, for any abelian group G, we have a partial resolution (i.e. exact sequence)

Z[G×G]→ Z[G]→ G→ 0

where the first map sends a generator [(g1, g2)] to [g1 + g2] − [g1] − [g2]. Since
this holds for any abelian group, the same result is true in condensed abelian
groups, so we have a partial resolution

Z[A×A]→ Z[A]→ A→ 0.

We can tensor the resolution with Z[S] for a profinite S and it stays exact (the
tensor product is right exact). We now have an exact sequence

Z[A×A]⊗ Z[S]→ Z[A]⊗ Z[S]→ A⊗ Z[S]→ 0.

Further, HomCondAb(−, B) is a left exact functor, meaning that we have an
exact sequence

0→ HomCondAb (A⊗ Z[S], B)→ HomCondAb (Z[A]⊗ Z[S], B)

→ HomCondAb (Z[A×A]⊗ Z[S], B) .
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By this exact sequence, showing that the map Z[A]⊗Z[S]→ B factors through
A⊗ Z[S] is equivalent to showing that the composition

Z[A×A]⊗ Z[S]→ Z[A]⊗ Z[S]→ B

is zero. We have

Z[A×A]⊗ Z[S] = Z[A×A× S] = Z[A×A× S]

and similarily,
Z[A]⊗ Z[S] = Z[A× S.

The composition above corresponds to a composition of continuous maps

A×A× S → A× S → B

and due to the way in which we defined our resolution, the map on the left is

(a1, a2, s) 7→ (a1 + a2 − a1 − a2, s) = (0, s).

The map on the right corresponds to a map S → Hom(A,B), i.e. for fixed s it
is a group homomorphism A→ B and in particular takes 0 to 0. Therefore, the
composition is zero as desired.

(4.3.2) Remark. By theorem (4.1.5) and proposition (4.1.17), we can map
locally compact abelian groups fully faithfully into condensed abelian groups
with the functor A 7→ A. Moreover, by proposition (4.3.1), the internal hom
is well-behaved with respect to this inclusion. In the following, we will discuss
how to compute RHom’s between condensed abelian groups associated to locally
compact abelian groups.

(4.3.3) Theorem. For any condensed abelian group A, there is a resolution
(i.e. exact sequence), functorial in A, of the form

· · · →
np⊕
j=1

Z[Arp,j ]→ · · · → Z[A3]⊕ Z[A2]→ Z[A2]→ Z[A]→ A→ 0

where np, rp,j are non-negative integers.

(4.3.4) Remark. The resolution in (4.3.3) is due to Eilenberg, Mac Lane,
Breen and Deligne and we refer to it as the EMBD resolution. See [Sch19b,
Theorem 4.5, Remark 4.6, and Appendix to Lecture IV].

(4.3.5) Theorem. For condensed abelian groups A,M and extremally discon-
nected set S, there is a spectral sequence

Ep,q1 =

np∏
j=1

Hq
cond(Arp,j × S,M)⇒ Extp+q(A,M)(S)

that is functorial in A,M,S.
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Proof. We apply RHom(−,M) to the EMBD resolution of A⊗Z[S], which has
the form

· · · →
np⊕
j=1

Z[Arp,j × S]→ · · · → Z[A3 × S]⊕ Z[A2 × S]

→ Z[A2 × S]→ Z[A× S]→ A⊗ Z[S]→ 0,

and use the fact that RHom(A,M)(S) = RHom(A ⊗ Z[S],M). We conclude
using theorem (4.2.4).

(4.3.6) RHoms between locally compact abelian groups. Let A and
B be locally compact abelian groups. We would like to be able to calculate
RHom(A,B) and relate it to an existing notion of RHom between locally com-
pact abelian groups due to Hoffmann and Spitzweck [HS07]. Thanks to the
structure theorem (4.1.11) (including Pontrjagin duality (4.1.14)), this compu-
tation can be reduced to a few cases of simple locally compact abelian groups
(see [Sch19b, Corollary 4.9]) the most important two being given by theorem
(4.3.7).

(4.3.7) Theorem. Consider the condensed abelian group associated to a com-
pact abelian group consisting of a product of circles

A =
∏
I

T =
∏
I

R/Z.

where I is any set. We have the following

(i) For any discrete condensed abelian group M (i.e. M = M ′ where M ′ is a
discrete abelian group),

RHom(A,M) =
⊕
I

M [−1]

where the isomorphism⊕
I

M [−1]→ RHom(A,M)

is induced by the maps

M [−1] = RHom(Z[1],M)→ RHom(R/Z,M)→ RHom(A,M),

where the last map is induced from the projection pi :
∏

R/Z → R/Z to
the i-th factor, i ∈ I.

(ii)
RHom(A,R) = 0
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Proof of (i). We start with the case where I is finite. In fact, this reduces to
I having one element, as the product becomes a direct sum which we pull out
of the RHom (it commutes with direct sums in the first variable, being a right
adjoint). So we need to show that the map

M [−1] = RHom(Z[1],M)→ RHom(R/Z,M)

is an isomorphism. Now we have the distinguished triangle (Z,R,R/Z) and by
(TR2), this means that the triangle (R,R/Z,Z[1]) is ditinguished. Thus, since
RHom(−,M) is a triangulated functor, we have a distinguished triangle

RHom(Z[1],M)→ RHom(R/Z,M)→ RHom(R,M)

so to show that the morphism between the first two is an isomorphism in the
derived category, we need to show that the third term is zero,

RHom(R,M) = 0 = RHom(0,M).

To prove this, we use the spectral sequence in (4.3.5) and we see that it suffices
to show that the map

Hq
cond(Rr × S,M)→ Hq

cond(S,M),

induced from the map (0, idS) : S → Rr × S, is an isomorphism for all q and r.
Using the comparison with classical cohomology of compact Hausdorff spaces
in theorem (3.2.5) and noting that [−n, n]r ×S is homotopy equivalent to S for
all n ∈ N, we have an isomorphism

Hq
cond([−n, n]r × S,M)→ Hq

cond(S,M),

induced by the same map. By lemma (2.7.6), the complex calculating the right
hand side is

RΓ(S,M) = R lim←−
n

RΓ(S,M)

so it suffices to show that

R lim←−
n

RΓ([−n, n]r × S,M)

calculates the cohomology

Hq
cond(Rr × S,M).

In other words, we need to show that

RHom(Z[Rr × S],M) = R lim←−
n

RHom(Z[[−n, n]r × S],M).

But since RHom(−,M) is a triangulated functor, it suffices to show that

Z[Rr × S] = hocolimn Z[[−n, n]r × S]
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but this follows from the fact that Rr × S is the increasing union (i.e. filtered
colimit over N) of the spaces [−n, n]r × S, lemma (2.7.7) and the passage from
topological spaces to condensed abelian groups.

Passing to the case of a possibly infinite indexing set I, it is enough to show
that the map

lim−→
J⊂I

RHom

∏
J

T,M

→ RHom

∏
I

T,M

 ,

where the colimit is taken over all finite subsets J of I (and is thus filtered), is
an isomorphism. The spectral sequence in (4.3.5) reduces this to proving that

lim−→
J⊂I

Hq
cond

∏
J

Tr,M

→ Hq
cond

∏
I

Tr,M

 ,

is an isomorphism. Here we are working with cohomology on compact Hausdorff
spaces and thus theorem (3.2.5) applies, and we can use this known result (see
[ES52, Chapter X, Theorem 3.1]) for sheaf/Čech cohomology.

For the proof of (ii), we refer to [Sch19b, Proof of Theorem 4.3].
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Appendix A

Categories

We fix here some conventions about categories, most importantly about limits
and colimits, as the terminology for these has varied quite a lot throughout
history. For proofs and more details we refer to the literature, for example
[Mac98] and [Sta21],

A.1 Limits and colimits

(A.1.1) Definition. Let I → C be a functor, for which the image of an object
i ∈ I is denoted Xi, and the image of a morphism (ϕ : i→ j) is denoted ϕij .

• The colimit of the functor I → C is an object lim−→i
Xi equipped with

morphisms fj : Xj → lim−→i
Xi such that for any morphism ϕ : j → k

in I, we have fj = fk ◦ ϕjk. Moreover, we require the colimit to be
universal with respect to this property, i.e. for every object C equipped
with morphisms ci : Xi → C such that ci = cj ◦ ϕij for all i, j, ϕ, there is
a unique morphism c : colimiXi → C such that c ◦ fi = ci for all i.

• The limit of the functor I → C is an object lim←−iXi equipped with mor-
phisms fj : lim←−iXi → Xj such that for any morphism ϕ : j → k in I,
we have fk = ϕjk ◦ fj . Moreover, we require the limit to be universal
with respect to this property, i.e. for every object P equipped with mor-
phisms pi : P → Xi such that pj = ϕij ◦ pi for all i, j, ϕ, there is a unique
morphism p : P → lim←−iXi such that fi ◦ p = pi for all i.

(A.1.2) Definition. • A category I is filtered if it is nonempty, for any
pair of objects i, i′, there is an object k and arrows i → k and i′ → k,
and for any pair of morphisms f, g : i → i′ there is a j and an morphism
h : i′ → j such that h ◦ g = h ◦ f .

87
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• A category I is cofiltered if it is nonempty, for any pair of objects i, i′,
there is an object k with arrows k → i and k → i′, and for any pair of
morphisms f, g : i→ i′ there is an object j and morphism h : j → i such
that f ◦ h = g ◦ h (in other words, its opposite category is filtered).

(A.1.3) Definition. A filtered colimit (resp. cofiltered limit) is a the colimit
(resp. limit) of a functor I → C where I is a filtered (resp. cofiltered) category.

(A.1.4) Definition. A partially ordered set I is called directed if it is nonempty
and for all i, j ∈ I, there exists a k ∈ I such that i ≤ k and j ≤ k.

(A.1.5) Definition. • Let I be a directed partially ordered set regarded
as a category in the natural way. Then a functor I → C is called a directed
system in C.

• Let I be a directed partially ordered set. Then a functor Iop → C is called
an directed inverse system in C.

(A.1.6) Remark. • A directed system in C is given by a collection of ob-
jects (Mi)i in C and for each i ≤ j an arrow ϕij : Mi → Mj such that
ϕii = idMi

for all i and ϕjk ◦ ϕij = ϕik for all i ≤ j ≤ k.

• A directed inverse system in C is given by a collection of objects (Mi)i in
C and for each i ≤ j an arrow ϕij : Mj →Mi such that ϕii = idMi

for all
i and ϕij ◦ ϕjk = ϕik for all i ≤ j ≤ k.

(A.1.7) Proposition. ([Sta21, Lemma 0032]) Every filtered colimit in C is
isomorphic to a colimit of a directed system and every cofiltered limit in C is
isomorphic to a limit of a directed inverse system.

(A.1.8) Definition. Suppose all finite limits (resp. finite colimits) exist in the
category C. A functor F : C → D is called left exact (resp. right exact) if it
commutes with all finite limits (resp. colimits). It is called exact if it is both
left and right exact.

A.2 Adjoints

(A.2.1) Definition. A pair (F,G) where F : C → D and G : D → C are
functors is called an adjoint pair of functors (F is left adjoint to G; G is right
adjoint to F ) if for all objects X of C and Y of D there are isomorphisms

HomD(F (X), Y ) ' HomC(X,G(Y )),

natural in X,Y .

(A.2.2) Remark. Taking Y = F (X) we obtain an isomorphism

HomD(F (X), F (X))→ HomC(X,G(F (X)))

https://stacks.math.columbia.edu/tag/0032
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and in particular a morphism ηX : X → G(F (X)) corresponding to IdF (X).
Similarily for X = G(Y ) we have

HomD(F (G(Y )), Y )→ HomC(G(Y ), G(Y ))

and again a morphism εY : F (G(Y ))→ Y corresponding to IdG(Y ).

These give morphisms of functors

η : IdC → G ◦ F (unit)

and
ε : F ◦G→ IdD (counit)

(A.2.3) Theorem. (Freyd, [Mac98, Theorem 2, p. 121]) Let F : C → D be a
functor and suppose C has all (co)limits. Under a solution set condition which
is satisfied for all categories considered in this thesis, the following holds: F has
a left (right) adjoint if and only if it preserves (co)limits.
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